This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103883 #22 May 25 2023 07:29:55 %S A103883 1,1,8,1,18,16,1,32,74,24,1,50,224,170,32,1,72,530,768,306,40,1,98, %T A103883 1072,2562,1856,482,48,1,128,1946,6968,8130,3680,698,56,1,162,3264, %U A103883 16394,28320,20082,6432,954,64,1,200,5154,34624,83442,85992,42130,10304,1250,72 %N A103883 Square array A(n,k) read by antidiagonals: coordination sequence for lattice B_n. %H A103883 G. C. Greubel, <a href="/A103883/b103883.txt">Antidiagonals n = 2..50, flattened</a> %H A103883 M. Baake and U. Grimm, <a href="https://arxiv.org/abs/cond-mat/9706122">Coordination sequences for root lattices and related graphs</a>, arXiv:cond-mat/9706122 [cond-mat.stat-mech], 1997. %H A103883 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>). %H A103883 Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44. %F A103883 G.f. of n-th row: (Sum_{i=0..n} (C(2n+1, 2*i) - 2*i*C(n, i))*x^i)/(1-x)^n. %F A103883 From _G. C. Greubel_, May 24 2023: (Start) %F A103883 A(n, k) = Sum_{j=0..k} binomial(n+k-j-1, n-1)*(binomial(2*n+1, 2*j) - 2*j*binomial(n, j)) (array). %F A103883 T(n, k) = Sum_{j=0..k} binomial(n-j-1, n-k-1)*(binomial(2*n-2*k+1, 2*j) - 2*j*binomial(n-k, j)) (antidiagonals). (End) %e A103883 Array, A(n, k), begins: %e A103883 1, 8, 16, 24, 32, 40, 48, ... A022144; %e A103883 1, 18, 74, 170, 306, 482, 698, ... A022145; %e A103883 1, 32, 224, 768, 1856, 3680, 6432, ... A022146; %e A103883 1, 50, 530, 2562, 8130, 20082, 42130, ... A022147; %e A103883 1, 72, 1072, 6968, 28320, 85992, 214864, ... A022148; %e A103883 1, 98, 1946, 16394, 83442, 307314, 907018, ... A022149; %e A103883 1, 128, 3264, 34624, 216448, 954880, 3301952, ... A022150; %e A103883 1, 162, 5154, 67266, 507906, 2653346, 10666146, ... A022151; %e A103883 1, 200, 7760, 122264, 1099040, 6728168, 31208560, ... A022152; %e A103883 1, 242, 11242, 210474, 2224178, 15804866, 83999962, ... A022153; %e A103883 1, 288, 15776, 346304, 4254912, 34792672, 210482016, ... A022154; %e A103883 ... %e A103883 Antidiagonals, T(n, k), begin as: %e A103883 1; %e A103883 1, 8; %e A103883 1, 18, 16; %e A103883 1, 32, 74, 24; %e A103883 1, 50, 224, 170, 32; %e A103883 1, 72, 530, 768, 306, 40; %e A103883 1, 98, 1072, 2562, 1856, 482, 48; %e A103883 1, 128, 1946, 6968, 8130, 3680, 698, 56; %e A103883 1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64; %t A103883 offset = 2; %t A103883 T[n_, k_] := SeriesCoefficient[Sum[(Binomial[2n + 1, 2i] - 2i Binomial[n, i]) x^i, {i, 0, n}]/(1 - x)^n, {x, 0, k}]; %t A103883 Table[T[n - k, k], {n, offset, 11}, {k, 0, n - offset}] // Flatten (* _Jean-François Alcover_, Feb 13 2019 *) %o A103883 (Magma) %o A103883 A103883:= func< n,k | (&+[Binomial(n-j-1,n-k-1)*(Binomial(2*n-2*k+1,2*j) - 2*j*Binomial(n-k,j)) : j in [0..k]]) >; %o A103883 [A103883(n,k): k in [0..n-2], n in [2..14]]; // _G. C. Greubel_, May 24 2023 %o A103883 (SageMath) %o A103883 def A103883(n,k): return sum(binomial(n-j-1,n-k-1)*(binomial(2*n-2*k+1,2*j) - 2*j*binomial(n-k,j)) for j in range(k+1)) %o A103883 flatten([[A103883(n,k) for k in range(n-1)] for n in range(2,15)]) # _G. C. Greubel_, May 24 2023 %Y A103883 Rows include A022144, A022145, A022146, A022147, A022148, A022149, A022150, A022151, A022152, A022153, A022154. %Y A103883 Columns include A001105. %Y A103883 Cf. A103881, A103884. %K A103883 nonn,tabl %O A103883 2,3 %A A103883 _Ralf Stephan_, Feb 20 2005