This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103889 #68 Jun 11 2025 12:01:42 %S A103889 2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15,18,17,20,19,22,21,24,23,26,25, %T A103889 28,27,30,29,32,31,34,33,36,35,38,37,40,39,42,41,44,43,46,45,48,47,50, %U A103889 49,52,51,54,53,56,55,58,57,60,59,62,61,64,63,66,65,68,67,70,69,72,71 %N A103889 Odd and even positive integers swapped. %C A103889 For n >= 5, also the number of (undirected) Hamiltonian cycles in the (n-2)-Moebius ladder. - _Eric W. Weisstein_, May 06 2019 %C A103889 For n >= 4, also the number of (undirected) Hamiltonian cycles in the (n-1)-prism graph. - _Eric W. Weisstein_, May 06 2019 %C A103889 The lexicographically first involution of the natural numbers with no fixed points. - _Alexander Fraebel_, Sep 08 2020 %H A103889 Eric Gottlieb, Matjaž Krnc, and Peter Muršič, <a href="https://arxiv.org/abs/2506.04991">Nim on Integer Partitions and Hyperrectangles</a>, arXiv:2506.04991 [math.CO], 2025. See p. 16. %H A103889 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a> %H A103889 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a> %H A103889 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrismGraph.html">Prism Graph</a> %H A103889 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A103889 a(2k) = 2k-1 = A005408(k), a(2k-1) = 2k = A005843(k), k=1, 2, ... %F A103889 O.g.f.: x*(x^2-x+2)/((x-1)^2*(1+x)). - _R. J. Mathar_, Apr 06 2008 %F A103889 a(n) = n-1+2*(n mod 2). - _Rolf Pleisch_, Apr 22 2008 %F A103889 a(n) = 2*n-a(n-1)-1 (with a(1)=2). - _Vincenzo Librandi_, Nov 16 2010 %F A103889 From _Bruno Berselli_, Nov 16 2010: (Start) %F A103889 a(n) = n - (-1)^n. %F A103889 a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3. %F A103889 (a(n) - 1)*(a(n-1) + 1) = 2*A176222(n+1) for n > 1. %F A103889 (a(n) - 1)*(a(n-3) + 1) = 2*A176222(n) for n > 3. (End) %F A103889 E.g.f.: 1 - exp(-x) + x*exp(x). - _Stefano Spezia_, May 03 2023 %t A103889 Table[{n + 1, n}, {n, 1, 100, 2}] // Flatten %t A103889 Table[n - (-1)^n, {n, 25}] (* _Eric W. Weisstein_, May 06 2019 *) %o A103889 (Magma) [n eq 1 select 2 else -Self(n-1)+2*n-1: n in [1..72]]; %o A103889 (Haskell) %o A103889 import Data.List (transpose) %o A103889 a103889 n = n - 1 + 2 * mod n 2 %o A103889 a103889_list = concat $ transpose [tail a005843_list, a005408_list] %o A103889 -- _Reinhard Zumkeller_, Jun 23 2013, Feb 21 2011 %o A103889 (PARI) a(n)=n-1+if(n%2,2) \\ _Charles R Greathouse IV_, Feb 24 2011 %o A103889 (Python) %o A103889 def a(n): return n+1 if n&1 else n-1 %o A103889 print([a(n) for n in range(1, 73)]) # _Michael S. Branicky_, May 03 2023 %Y A103889 Essentially the same as A014681. %Y A103889 Odd numbers: A005408. Even numbers: A005843. %Y A103889 Cf. A004442. %K A103889 nonn,easy %O A103889 1,1 %A A103889 _Zak Seidov_, Feb 20 2005