This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103893 #26 Jan 21 2024 02:22:58 %S A103893 1,1,1,1,2,3,3,4,2,3,2,4,4,5,3,2,3,4,6,5,5,5,5,6,5,4,5,3,7,5,5,8,5 %N A103893 Number of distinct prime factors of prime(n)! / prime(n)# + 1. %C A103893 Also the number of distinct prime factors of the P_n-th compositorial. %C A103893 a(31) > 4 and its composite part is a 155-digit number. %C A103893 a(34) >= 4. - _Amiram Eldar_, Jan 21 2024 %H A103893 Dario Alejandro Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Factorization using the Elliptic Curve Method</a>. %H A103893 Factordb.com, <a href="http://factordb.com/index.php?query=139%21%2F139%23%2B1">Status of 139!/139#+1</a>. %H A103893 Hisanori Mishimar, <a href="https://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/compo_p.htm">Compositorial + 1 (n = 4 to 150)</a>. %H A103893 Reinhard Zumkeller, <a href="/A103890/a103890.txt">prime(n)!/prime(n)#+1</a>. %F A103893 a(n) = A001221(A103890(n)). %t A103893 bigomega[n_Integer] := Plus @@ Last /@ FactorInteger[n]; f[n_] := Prime[n]!/Product[Prime[i], {i, n}] + 1; Table[ f[n], {n, 27}] (* _Robert G. Wilson v_, Mar 11 2005 *) %Y A103893 Cf. A001221, A103858, A103890. %K A103893 nonn,more %O A103893 1,5 %A A103893 _Reinhard Zumkeller_, Feb 20 2005 %E A103893 Corrected and extended by _Robert G. Wilson v_, Mar 12 2005 %E A103893 a(31)-a(33) using factordb.com added by _Amiram Eldar_, Jan 21 2024