This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103897 #45 Sep 08 2022 08:45:17 %S A103897 3,18,84,360,1488,6048,24384,97920,392448,1571328,6288384,25159680, %T A103897 100651008,402628608,1610563584,6442352640,25769607168,103078821888, %U A103897 412316073984,1649265868800,6597066620928,26388272775168,105553103683584,422212439900160 %N A103897 a(n) = 3*2^(n-1)*(2^n-1). %C A103897 Divide the sequence of natural numbers: s0=1,2,3,4,5,6,7,8,9,10,11,12,13,14,... into sections s(n) of length 2*s1-1, where s1=initial digits of s(n): s={1,2},{3,4,5,6},{7,8,9,10,11,12,13,14},... then a(n)=sum of terms of s(n): 3,18,84,... %C A103897 Sum of the numbers between 2^n and 2^(n+1), both excluded. - _Gionata Neri_, Jun 16 2015 %H A103897 Vincenzo Librandi, <a href="/A103897/b103897.txt">Table of n, a(n) for n = 1..1000</a> %H A103897 Paul Barry, <a href="https://arxiv.org/abs/2104.05593">On the Gap-sum and Gap-product Sequences of Integer Sequences</a>, arXiv:2104.05593 [math.CO], 2021. %H A103897 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-8). %F A103897 a(n) = 3*A006516(n). %F A103897 From _Bruno Berselli_, Sep 19 2011: (Start) %F A103897 G.f.: 3*x/((1-2*x)*(1-4*x)). %F A103897 a(n+2) = A061561(4n-2). (End) %F A103897 E.g.f.: (3/2)*(exp(4*x) - exp(2*x)). - _Stefano Spezia_, Nov 10 2019 %t A103897 Table[3*2^(n - 1)*(2^n - 1), {n, 30}] %t A103897 LinearRecurrence[{6,-8},{3,18},30] (* _Harvey P. Dale_, Feb 11 2018 *) %o A103897 (Magma) [3*2^(n-1)*(2^n-1): n in [1..24]]; // _Bruno Berselli_, Sep 19 2011 %o A103897 (PARI) a(n)=3*2^(n-1)*(2^n-1) \\ _Charles R Greathouse IV_, Jun 08 2015 %o A103897 (Python) b = list(range(0,2**20-1)); a = [sum(b[2**i-1:2**(i+1)-1]) for i in range(1,20)] ## _Johan Claes_, Nov 10 2019 %Y A103897 Cf. A006516. %K A103897 nonn,easy %O A103897 1,1 %A A103897 _Zak Seidov_, Mar 30 2005