This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103922 #19 Feb 16 2025 08:32:56 %S A103922 1,16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,8,5,1,2,1,1,1,5,1,1,3,5,1, %T A103922 1,1,2,3,1,1,1,73,3,5,1,1,1,2,26,2,1,1,2,7,2,1,1,2,3,1,1,1,14,1,2,1,4, %U A103922 1,19,8,3,6,5,1,2,1,1,1,5,1,4,1,1,3,10,1,1,4,4,9,4,4,1,1,1,4,1,19,16,13 %N A103922 Continued fraction expansion of the twelfth root of two, 2^(1/12). %C A103922 Successive note frequencies in the twelve-tone equal temperament chromatic scale are 2^(1/12) higher than their predecessor. %H A103922 Michael Rubinstein, University of Waterloo, <a href="http://www.math.uwaterloo.ca/~mrubinst/tuning/tuning.html">The Conspiracy of Equal Temperament</a> %H A103922 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ContinuedFraction.html">Continued Fractions</a> %H A103922 Wikipedia, <a href="http://en.wikipedia.org/wiki/Equal_temperament">Equal Temperament</a> %t A103922 ContinuedFraction[2^(1/12), 100] %t A103922 ContinuedFraction[Surd[2,12],120] (* _Harvey P. Dale_, Jan 02 2019 *) %o A103922 (PARI) default(realprecision, 120); contfrac(2^(1/12)) \\ _Seiichi Manyama_, Feb 05 2021 %Y A103922 Cf. A010774, A341113. %K A103922 cofr,nice,nonn %O A103922 0,2 %A A103922 Nicholas A Kooij (nickkooij(AT)hotmail.com), May 02 2005