This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103926 #24 May 30 2021 15:38:11 %S A103926 1,2,5,10,20,36,65,110,184,297,473,734,1127,1696,2526,3707,5388,7737, %T A103926 11018,15532,21731,30147,41538,56813,77234,104317,140120,187139, %U A103926 248680,328769,432664,566759,739297,960315,1242583,1601645,2057095,2632724 %N A103926 Number of partitions of n into parts but with two kinds of parts of sizes 1 to 7. %C A103926 See A103923 for other combinatorial interpretations of a(n). %C A103926 Also the sum of binomial (D(p), 7) over partitions p of n+28, where D(p) is the number of different part sizes in p. - _Emily Anible_, Jun 09 2018 %D A103926 H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 90. %D A103926 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. %F A103926 G.f.: (product(1/(1-x^k), k=1..7)^2)*product(1/(1-x^j), j=8..infty). %F A103926 a(n) = sum(A103924(n-7*j), j=0..floor(n/7)), n>=0. %F A103926 a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^(7/2) * n^(5/2) / (4*sqrt(3) * 7! * Pi^7). - _Vaclav Kotesovec_, Aug 28 2015 %t A103926 nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 7}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 28 2015 *) %t A103926 Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@7], {n,0,37}] (* _Robert Price_, Jul 29 2020 *) %t A103926 T[n_, 0] := PartitionsP[n]; %t A103926 T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m]; %t A103926 T[_, _] = 0; %t A103926 a[n_] := T[n + 28, 7]; %t A103926 Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 30 2021 *) %Y A103926 Eighth column (m=7) of Fine-Riordan triangle A008951 and of triangle A103923, i.e. the p_2(n, m) array of the Gupta et al. reference. %Y A103926 Cf. A000712 (all parts of two kinds). %K A103926 nonn,easy %O A103926 0,2 %A A103926 _Wolfdieter Lang_, Mar 24 2005