A103929 Number of partitions of n into parts but with two kinds of parts of sizes 1 to 10.
1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 751, 1162, 1762, 2647, 3918, 5748, 8331, 11981, 17056, 24108, 33787, 47043, 65019, 89336, 121954, 165585, 223542, 300295, 401331, 533937, 707057, 932404, 1224376, 1601571, 2086851, 2709449, 3505228
Offset: 0
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 91.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
Crossrefs
Programs
-
Mathematica
nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 10}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *) Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@10], {n,0,37}] (* Robert Price, Jul 29 2020 *) T[n_, 0] := PartitionsP[n]; T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m]; T[, ] = 0; a[n_] := T[n + 55, 10]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
Formula
G.f.: (product(1/(1-x^k), k=1..10)^2)*product(1/(1-x^j), j=11..infty).
a(n)=sum(A103924(n-10*j), j=0..floor(n/10)), n>=0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^5 * n^4 / (4*sqrt(3) * 10! * Pi^10). - Vaclav Kotesovec, Aug 28 2015
Comments