This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103940 #19 Mar 29 2021 15:06:40 %S A103940 1,1,2,5,18,72,368,1982,11514,69270,430384,2736894,17752884,117039548, %T A103940 782480424,5294705752,36206357114,249894328848,1739030128872, %U A103940 12191512867814,86037243899240,610827161152012,4360291880624504,31280354620428378,225427088761560916,1631398499577667252 %N A103940 Number of unrooted bipartite n-edge maps in the plane (planar with a distinguished outside face). %C A103940 Bipartite planar maps are dual to Eulerian planar maps. %D A103940 V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005. %H A103940 Andrew Howroyd, <a href="/A103940/b103940.txt">Table of n, a(n) for n = 0..500</a> %H A103940 V. A. Liskovets and T. R. Walsh, <a href="http://dx.doi.org/10.1016/j.aam.2005.03.006">Counting unrooted maps on the plane</a>, Advances in Applied Math., 36, No.4 (2006), 364-387. %F A103940 For n > 0, a(n) = (1/(2n))*[2^(n-1)*binomial(2n, n)/(n+1) + Sum_{0<k<n, k|n} phi(n/k)*d(n/k)*2^(k-1)*binomial(2k, k)] + q(n) where phi is the Euler function A000010, d(n)=2, q(n)=0 if n is even and d(n)=1, q(n)=2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1) if n is odd. %t A103940 a[n_] := (1/(2 n)) (2^(n - 1) Binomial[2 n, n]/(n+1) + Sum[Boole[0 < k < n] EulerPhi[n/k] d[n/k] 2^(k-1) Binomial[2k, k], {k, Divisors[n]}]) + q[n]; %t A103940 d[n_] := If[EvenQ[n], 2, 1]; %t A103940 q[n_] := If[EvenQ[n], 0, 2^((n-1)/2) Binomial[n-1, (n-1)/2]/(n+1)]; %t A103940 Array[a, 25] (* _Jean-François Alcover_, Aug 30 2019 *) %o A103940 (PARI) a(n)={if(n==0, 1, sumdiv(n, d, if(d<n, 1, 1/(n+1)) * eulerphi(n/d) * (2-n/d%2) * 2^(d-1) * binomial(2*d,d))/(2*n) + if(n%2, 2^((n-1)/2)*binomial(n-1,(n-1)/2)/(n+1)))} \\ _Andrew Howroyd_, Mar 29 2021 %Y A103940 Cf. A003645, A103939, A069727. %K A103940 easy,nonn %O A103940 0,3 %A A103940 _Valery A. Liskovets_, Mar 17 2005 %E A103940 More terms from _Jean-François Alcover_, Aug 30 2019 %E A103940 a(0)=1 prepended by _Andrew Howroyd_, Mar 29 2021