This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103945 #9 Aug 28 2019 12:40:18 %S A103945 2,14,107,844,6757,54522,441863,3589880,29206025,237780982,1936486411, %T A103945 15771410420,128431734797,1045618229234,8510270668815,69241255165936, %U A103945 563154350637073,4578526894227438,37209886138826771,302291556342169580 %N A103945 Number of rooted dual-unicursal n-edge maps in the plane (planar with a distinguished outside face). %D A103945 V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005. %H A103945 V. A. Liskovets and T. R. Walsh, <a href="http://dx.doi.org/10.1016/j.aam.2005.03.006">Counting unrooted maps on the plane</a>, Advances in Applied Math., 36, No.4 (2006), 364-387. %F A103945 a(n)=(n+2)*A069720(n)-A103944(n). %t A103945 A069720[n_] := 2^(n-1) Binomial[2n-1, n]; %t A103945 A103944[n_] := If[n == 1, 1, n Binomial[2n, n] Sum[Binomial[n-2, k] (1/(n + 1 + k) + n/(n + 2 + k)), {k, 0, n-2}]]; %t A103945 a[n_] := (n+2) A069720[n] - A103944[n]; %t A103945 Array[a, 20] (* _Jean-François Alcover_, Aug 28 2019 *) %Y A103945 Cf. A069720, A103944. %K A103945 easy,nonn %O A103945 1,1 %A A103945 _Valery A. Liskovets_, Mar 17 2005