This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103994 #19 Sep 14 2019 16:41:00 %S A103994 1,1,1,-1,0,1,1,1,0,1,-1,0,0,0,1,-1,-1,1,0,0,1,-1,0,0,0,0,0,1,1,1,0,1, %T A103994 0,0,0,1,0,0,-1,0,0,0,0,0,1,-1,-1,0,0,1,0,0,0,0,1,-1,0,0,0,0,0,0,0,0, %U A103994 0,1,-1,-1,1,-1,0,1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,1 %N A103994 A129360 * A115361. %C A103994 Row sums = A104117: (1, 2, 0, 3, 0, 0, 0, 4, 0, 0, ...). %H A103994 Andrew Howroyd, <a href="/A103994/b103994.txt">Table of n, a(n) for n = 1..1275</a> %F A103994 A129360 * A115361 as infinite lower triangular matrices. %F A103994 T(n,k) = A209635(n/k) for k | n, T(n,k) = 0 otherwise. - _Andrew Howroyd_, Aug 03 2018 %e A103994 First few rows of the triangle are: %e A103994 1; %e A103994 1, 1; %e A103994 -1, 0, 1; %e A103994 1, 1, 0, 1; %e A103994 -1, 0, 0, 0, 1; %e A103994 -1, -1, 1, 0, 0, 1; %e A103994 -1, 0, 0, 0, 0, 0, 1; %e A103994 1, 1, 0, 1, 0, 0, 0, 1; %e A103994 ... %t A103994 T[n_, k_] := If[Divisible[n, k], MoebiusMu[(n/k)/2^IntegerExponent[n/k, 2]], 0]; %t A103994 Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 14 2019 *) %o A103994 (PARI) tabl(nn) = {Tm = matrix(nn, nn, n, k, if (! (n % k), moebius(n/k), 0)); Tr = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); Ti = Tr^(-1); Tp = Tm*Ti*Ti; for (n=1, nn, for (k=1, n, print1(Tp[n, k], ", ");); print(););} %o A103994 (PARI) T(n, k)={ if(n%k, 0, sumdiv(n/k, d, my(e=valuation(d, 2)); if(d==1<<e, moebius(n/(k*d))*(1 + e), 0))) } \\ _Andrew Howroyd_, Aug 03 2018 %Y A103994 Column 1 is A209635 (Moebius transform of A104117). %Y A103994 Row sums are A104117. %Y A103994 Cf. A129360, A115361. %K A103994 tabl,sign %O A103994 1,1 %A A103994 _Gary W. Adamson_, Apr 15 2007 %E A103994 More terms from _Michel Marcus_, Mar 28 2015