This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103997 #49 Feb 16 2022 20:40:08 %S A103997 1,1,1,1,3,1,1,11,7,1,1,41,71,18,1,1,153,769,539,47,1,1,571,8449, %T A103997 17753,4271,123,1,1,2131,93127,603126,434657,34276,322,1,1,7953, %U A103997 1027207,20721019,46069729,10894561,276119,843,1,1,29681,11332097,714790675,4974089647,3625549353,275770321,2226851,2207,1 %N A103997 Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip. %H A103997 Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, <a href="https://doi.org/10.37236/4472">Sandpiles and Dominos</a>, El. J. Comb., 22 (2015), P1.66. See Theorem 18. %H A103997 W. T. Lu and F. Y. Wu, <a href="https://arxiv.org/abs/cond-mat/9906154">Dimer statistics on the Moebius strip and the Klein bottle</a>, arXiv:cond-mat/9906154 [cond-mat.stat-mech], 1999. %H A103997 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a> %F A103997 T(M, N) = Product_{m=1..M} (Product_{n=1..N} 4*sin(Pi*(4*n-1)/(4*N))^2 + 4*cos(Pi*m/(2*M + 1))^2). %F A103997 For k > 0, T(n,k) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{2*k}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - _Seiichi Manyama_, Apr 15 2020 %e A103997 Array begins: %e A103997 1, 1, 1, 1, 1, 1, 1, %e A103997 1, 3, 7, 18, 47, 123, 322, %e A103997 1, 11, 71, 539, 4271, 34276, 276119, %e A103997 1, 41, 769, 17753, 434657, 10894561, 275770321, %e A103997 1, 153, 8449, 603126, 46069729, 3625549353, 289625349454, %e A103997 1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063, %e A103997 ... %t A103997 T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}]; %t A103997 Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* _Jean-François Alcover_, Dec 03 2018 *) %Y A103997 Rows include A005248, A103998. %Y A103997 Columns 1..7 give A001835(n+1), A334135, A334179, A334180, A334181, A334182, A334183. %Y A103997 Main diagonal gives A334124. %Y A103997 Cf. A099390, A103999, A341741, A334178, A256045, A348566. %K A103997 nonn,tabl %O A103997 0,5 %A A103997 _Ralf Stephan_, Feb 26 2005