cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104019 Years in the Gregorian calendar for which Easter falls on the 25th day of the month.

This page as a plain text file.
%I A104019 #22 Aug 15 2020 08:48:07
%S A104019 1663,1666,1674,1731,1734,1742,1883,1886,1894,1943,1951,2035,2038,
%T A104019 2046,2103,2187,2190,2198,2255,2258,2266,2323,2326,2334,2407,2410,
%U A104019 2418,2491,2559,2570,2573,2581,2627,2630,2638,2779,2782,2790,2874,2877,2885,2931
%N A104019 Years in the Gregorian calendar for which Easter falls on the 25th day of the month.
%C A104019 The starting point for the sequence is explained by the fact that the Gregorian calendar was only introduced in 1582.
%C A104019 The complete Easter cycle lasts 5700000 years. In this cycle, Mar 25 occurs 110200 times and Apr 25 occurs 42000 times for a total of 152200 times. This reduces to 761 occurrences every 28500 years (~2.67%). - _Hans Havermann_, Jan 27 2008
%H A104019 Holger Oertel, <a href="https://web.archive.org/web/20120314005924/http://www.ortelius.de/kalender/east_en.php">Calculation of Easter</a>. [Via Wayback Machine]
%H A104019 M. Montes, <a href="http://www.smart.net/~mmontes/freq1.html">Frequency of the Date of Easter over one complete Gregorian Easter Cycle</a>.
%H A104019 <a href="/index/Ca#calendar">Index entries for sequences related to calendars</a>
%F A104019 The formula is based on the algorithm of Oudin (1940) taken from the link.
%t A104019 (* first do *) Needs["Miscellaneous`Calendar`"] (* then *) Select[ Range[1582, 2941], EasterSunday[ # ][[3]] == 25 &] (* _Robert G. Wilson v_, Apr 06 2005 *)
%o A104019 (PARI) edate(yr1,yr2,day) = { local(flag=1,d,y,y2,ct,dt); for(d=day,day, ct=0; for(y=yr1,yr2, dt=oudin(y); if(eval(mid(dt,4,2))==d, if(flag,y2=y;flag=0); ct++; \ print(ct" "dt" "y-y2); print1(y","); if(y2<>y,y2=y); ); ); \ print1(ct","); ) } oudin(y) = \This is based on the algorithm of Oudin (1940) { local(c,n,k,i1,i2,i3,a1,a2,m,d,l,dt,dat=""); c=floor(y/100); n=y-19*floor(y/19); k=floor((c-17)/25); i1=c-floor(c/4)-floor((c-k)/3)+19*n+15; i2=i1-30*floor(i1/30); i3=i2-floor(i2/28)*(1-floor(i2/28)*floor(29/(i2+1))*floor((21-n)/11)); a1=y+floor(y/4)+i3+2-c+floor(c/4); a2=a1-7*floor(a1/7); l=i3-a2; m=3+floor((l+40)/44); d=l+28-31*floor(m/4); dat = concat(dat,right(Str(m+100),2)); dat = concat(dat," "); dat = concat(dat,right(Str(d+100),2)); dat = concat(dat," "); dat = concat(dat,Str(y)); return(dat); }
%Y A104019 Cf. A104034.
%K A104019 nonn
%O A104019 1,1
%A A104019 _Cino Hilliard_, Mar 31 2005
%E A104019 More terms from _Robert G. Wilson v_, Apr 06 2005