A104034 Years between occurrences of Easter on the 25th of the month in the Gregorian calendar.
3, 8, 57, 3, 8, 141, 3, 8, 49, 8, 84, 3, 8, 57, 84, 3, 8, 57, 3, 8, 57, 3, 8, 73, 3, 8, 73, 68, 11, 3, 8, 46, 3, 8, 141, 3, 8, 84, 3, 8, 46, 11, 3, 8, 49, 8, 73, 11, 3, 54, 3, 8, 84, 3, 8, 46, 3, 8, 84, 68, 3, 8, 46, 11, 3, 8, 73, 3, 8, 141, 11, 3, 8, 46, 3, 8, 57, 84, 3, 8, 84, 3, 8, 46, 11
Offset: 1583
Keywords
Links
- Holger Oertel, Calculation of Easter. [Via Wayback Machine]
- Index entries for sequences related to calendars
Programs
-
PARI
edate(yr1,yr2,day) = { local(flag=1,d,y,y2,ct,dt); for(d=day,day, ct=0; for(y=yr1,yr2, dt=oudin(y); if(eval(mid(dt,4,2))==d, if(flag,y2=y;flag=0); ct++; print1(y-y2","); if(y2<>y,y2=y); ); ); \ print(d","ct); ) } oudin(y) = \This is based on the algorithm of Oudin (1940) { local(c,n,k,i1,i2,i3,a1,a2,m,d,l,dt,dat=""); c=floor(y/100); n=y-19*floor(y/19); k=floor((c-17)/25); i1=c-floor(c/4)-floor((c-k)/3)+19*n+15; i2=i1-30*floor(i1/30); i3=i2-floor(i2/28)*(1-floor(i2/28)*floor(29/(i2+1))*floor((21-n)/11)); a1=y+floor(y/4)+i3+2-c+floor(c/4); a2=a1-7*floor(a1/7); l=i3-a2; m=3+floor((l+40)/44); d=l+28-31*floor(m/4); dat = concat(dat,right(Str(m+100),2)); dat = concat(dat," "); dat = concat(dat,right(Str(d+100),2)); dat = concat(dat," "); dat = concat(dat,Str(y)); return(dat); }
Formula
The formula is based on the algorithm of Oudin (1940) taken from the link.
Comments