A104162 Indicator sequence for the Fibonacci numbers.
1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
a(1)=2 since F(1)=F(2)=1.
Programs
-
PARI
a(n)=if(n==1,return(2)); my(k=n^2);k+=((k + 1) << 2);issquare(k) || issquare(k-8) \\ Charles R Greathouse IV, Feb 03 2014; typo corrected by Georg Fischer, Jun 22 2022
Formula
G.f.: Sum_{k>=0} x^Fibonacci(k).
From Hieronymus Fischer, May 17 2007: (Start)
a(n) = 1+floor(arcsinh(sqrt(5)*n/2)/log(phi))-ceiling(arccosh(sqrt(5)*n/2)/log(phi)), for n>0, where phi=(1+sqrt(5))/2.
Comments