This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104163 #20 Mar 12 2014 16:36:45 %S A104163 7,19,43,61,79,109,151,163,223,271,349,421,439,523,601,613,631,673, %T A104163 691,811,853,919,991,1009,1051,1063,1153,1213,1231,1279,1321,1429, %U A104163 1531,1549,1663,1693,1789,1801,1873,1933,1951,2113,2143,2179,2221,2239,2503,2539 %N A104163 Primes p such that (2p+1)/3 is prime. %C A104163 Dickson's conjecture implies that this sequence is infinite. - _Charles R Greathouse IV_, Jul 31 2012 %H A104163 Vincenzo Librandi, <a href="/A104163/b104163.txt">Table of n, a(n) for n = 1..1000</a> %F A104163 a(n)=(3*A158708(n+1)-1)/2 _Zak Seidov_, Jul 31 2012 %e A104163 7 is in the sequence because (2 * 7 + 1)/3 = 5, which is also prime. %e A104163 19 is in the sequence because (2 * 19 + 1)/3 = 13, which is also prime. %t A104163 Select[Range[7, 2539, 2], PrimeQ[#] && PrimeQ[(2# + 1)/3]&] (* _Zak Seidov_, Jul 31 2012 *) %t A104163 Select[Prime[Range[400]], PrimeQ[(2 # + 1) / 3]&] (* _Vincenzo Librandi_, Apr 14 2013 *) %o A104163 (PARI) is(n)=n%3==1 && isprime((2*n+1)/3) && isprime(n) \\ _Charles R Greathouse IV_, Jul 31 2012 %Y A104163 Cf. A005384. %K A104163 nonn,easy %O A104163 1,1 %A A104163 _Roger L. Bagula_, Mar 10 2005 %E A104163 New name from _Charles R Greathouse IV_, Jul 31 2012