A104166 Repdigit Smith numbers.
4, 22, 666, 1111, 6666666, 4444444444, 44444444444444444444, 555555555555555555555555555, 55555555555555555555555555555555, 4444444444444444444444444444444444444444444444444444444
Offset: 1
Links
- Shyam Sunder Gupta, Smith Numbers.
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
Programs
-
Mathematica
d[n_]:=IntegerDigits[n]; tr[n_]:=Transpose[FactorInteger[n]]; a[n_]:=NestList[FromDigits[Flatten[d[{#,n}]]]&,n,55]; t={}; Do[If[!PrimeQ[n]&&Total[d[n]]==Total[d@tr[n][[1]]*tr[n][[2]],2],AppendTo[t,n]],{n,Drop[Union[Flatten[Table[a[k],{k,9}]]],1]}]; t (* Jayanta Basu, Jun 04 2013 *)
-
Python
from sympy import factorint from itertools import product def sd(n): return sum(map(int, str(n))) def smith(n): f = factorint(n) return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f) def repsto(limit): yield from range(min(limit, 9)+1) for rep in range(2, 10**len(str(limit))): for digit in "123456789": out = int(digit*rep) if out > limit: return yield out print(list(filter(smith, repsto(10**32)))) # Michael S. Branicky, Apr 22 2021