cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104171 Reversible Smith numbers, i.e., Smith numbers whose reversal is also a Smith number.

Original entry on oeis.org

4, 22, 58, 85, 121, 202, 265, 319, 454, 535, 562, 636, 666, 913, 1111, 1507, 1642, 1881, 1894, 1903, 2461, 2583, 2605, 2614, 2839, 3091, 3663, 3852, 4162, 4198, 4369, 4594, 4765, 4788, 4794, 4954, 4974, 4981, 5062, 5386, 5458, 5539, 5674, 5818, 5926, 6295
Offset: 1

Views

Author

Shyam Sunder Gupta, Mar 10 2005

Keywords

Comments

The palindromic Smith numbers (A098834) are a subset of the reversible Smith numbers.

Examples

			a(3) = 58 because 58 and its reverse 85 are Smith numbers.
		

Crossrefs

Programs

  • Mathematica
    rev[n_] := FromDigits @ Reverse @ IntegerDigits[n]; digSum[n_] := Plus @@ IntegerDigits[n]; smithQ[n_] := CompositeQ[n] && Plus @@ (Last@#*digSum[First@#] & /@ FactorInteger[n]) == digSum[n]; Select[Range[6000], smithQ[#] && smithQ @ rev[#] &] (* Amiram Eldar, Aug 24 2020 *)
  • Python
    from sympy import factorint
    def sd(n): return sum(map(int, str(n)))
    def smith(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f)
    def ok(n): return smith(n) and smith(int(str(n)[::-1]))
    print(list(filter(ok, range(6296)))) # Michael S. Branicky, Apr 22 2021