A104171 Reversible Smith numbers, i.e., Smith numbers whose reversal is also a Smith number.
4, 22, 58, 85, 121, 202, 265, 319, 454, 535, 562, 636, 666, 913, 1111, 1507, 1642, 1881, 1894, 1903, 2461, 2583, 2605, 2614, 2839, 3091, 3663, 3852, 4162, 4198, 4369, 4594, 4765, 4788, 4794, 4954, 4974, 4981, 5062, 5386, 5458, 5539, 5674, 5818, 5926, 6295
Offset: 1
Examples
a(3) = 58 because 58 and its reverse 85 are Smith numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Smith Numbers.
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
Programs
-
Mathematica
rev[n_] := FromDigits @ Reverse @ IntegerDigits[n]; digSum[n_] := Plus @@ IntegerDigits[n]; smithQ[n_] := CompositeQ[n] && Plus @@ (Last@#*digSum[First@#] & /@ FactorInteger[n]) == digSum[n]; Select[Range[6000], smithQ[#] && smithQ @ rev[#] &] (* Amiram Eldar, Aug 24 2020 *)
-
Python
from sympy import factorint def sd(n): return sum(map(int, str(n))) def smith(n): f = factorint(n) return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f) def ok(n): return smith(n) and smith(int(str(n)[::-1])) print(list(filter(ok, range(6296)))) # Michael S. Branicky, Apr 22 2021
Comments