cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104209 Number of labeled directed multigraphs with n arrows and no vertex of degree 0.

This page as a plain text file.
%I A104209 #24 Jan 13 2022 05:37:20
%S A104209 1,3,39,819,23949,898947,41212155,2232057171,139455901101,
%T A104209 9873341493231,781184921112075,68309191570851759,6541702440222052137,
%U A104209 680922615974259589527,76544749927261960908807,9241807764375868372683255,1192762017796744530286451865
%N A104209 Number of labeled directed multigraphs with n arrows and no vertex of degree 0.
%C A104209 These are the dimensions of the homogeneous components of a commutative graded Hopf algebra generalizing quasi-symmetric functions.
%H A104209 J.-C. Novelli, J.-Y. Thibon and N. M. Thiéry, <a href="http://dx.doi.org/10.1016/j.crma.2004.09.012">Algèbres de Hopf de graphes</a> [Hopf algebras of graphs], C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
%F A104209 a(n) = Sum_{m >=0} binomial(m^2+n-1, n)/2^(m+1).
%F A104209 G.f.: Sum_{m >= 0} (1-x)^(-m^2)/2^(m+1). Row sums of A120945. - _Vladeta Jovovic_, Sep 25 2006
%F A104209 a(n) ~ c * 2^(2*n) * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.432167265869761794333243584356866417673557873163120324347... = 2^(log(2)/8 - 1) / (sqrt(Pi) * log(2)). - _Vaclav Kotesovec_, May 03 2015, updated Mar 21 2018
%e A104209 a(1)=3, the three graphs being (1 -> 2), (2 -> 1) and (1 -> 1).
%p A104209 d:=proc(n) local m;sum(binomial(m^2+n-1,n)/2^(m+1),m=0..infinity);end;
%t A104209 f[n_] := Sum[ Binomial[m^2 + n - 1, n]/2^(m + 1), {m, 0, Infinity}]; Table[ f[n], {n, 0, 15}] (* _Robert G. Wilson v_, Mar 16 2005 *)
%t A104209 Table[Sum[Sum[(-1)^(k-j)*Binomial[k,j]*Binomial[j^2+n-1,n],{j,0,k}],{k,0,2*n}],{n,0,20}] (* _Vaclav Kotesovec_, May 03 2015, much faster *)
%Y A104209 Cf. A052171 (counts same objects up to labeling).
%Y A104209 Cf. A020561, A120945.
%K A104209 nonn
%O A104209 0,2
%A A104209 Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Mar 13 2005
%E A104209 Corrected and extended by _Robert G. Wilson v_, Mar 16 2005
%E A104209 Offset corrected by _Vaclav Kotesovec_, May 03 2015