A104234 Number of k >= 1 such that k+n == 0 mod 2^k.
0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1
Offset: 0
Keywords
Links
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
Programs
-
Maple
f:=proc(n) local t1,l; t1:=0; for l from 1 to n do if n+l mod 2^l = 0 then t1:=t1+1; fi; od: t1; end;
Formula
a(2^k + y) = a(y) + 1 if y = 2^k - k - 1, = a(y) otherwise (where 0 <= y <= 2^k - 1).
Comments