A104242 Primes which are the concatenation of two consecutive square numbers.
6481, 144169, 324361, 400441, 784841, 16001681, 23042401, 67246889, 77447921, 84648649, 92169409, 96049801, 1254412769, 1638416641, 1742417689, 1960019881, 2016420449, 4752447961, 5382454289, 5664457121, 5760058081, 6051661009
Offset: 1
Examples
The first term is 6481 which is a prime and is the concatenation of 64 and 81 which are two consecutive square numbers.
References
- E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung, Math. Annalen, 114 (1937), 1-28; Werke pp. 644-671. See page 671.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Haruzo Hida, Arithmetic of Weil numbers and Hecke fields.
- Don Zagier, Elliptic Modular Forms and Their Applications
Crossrefs
Programs
-
Maple
catn:= proc(a,b) 10^(1+ilog10(b))*a+b end proc: R:= NULL: count:= 0: for x from 2 by 2 while count < 100 do y:= catn(x^2,(x+1)^2); if isprime(y) then count:= count+1; R:= R, y; fi od: R; # Robert Israel, May 19 2020
-
Python
from sympy import isprime A104242_list = [] for n in range(1,2000): x = int(str(n**2)+str((n+1)**2)) if isprime(x): A104242_list.append(x) # Chai Wah Wu, Sep 13 2014
Comments