This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104248 #24 Jan 30 2025 14:07:45 %S A104248 2,1,2,1,2,1,1,2,2,1,2,1,2,2,1,1,2,1,2,1,2,1,1,2,2,1,1,2,1,2,1,2,2,1, %T A104248 2,1,2,1,1,2,2,1,2,1,2,2,1,1,2,1,2,1,2,2,1,2,1,2,1,1,2,2,1,1,2,1,2,1, %U A104248 2,1,1,2,2,1,2,1,2,2,1,1,2,1,2,1,2,1,1,2,2,1,1,2,1,2,1,2,2,1,2,1,2,1,1,2,2 %N A104248 Lengths of successive runs of 1's in the Thue-Morse sequence A010060. %C A104248 Also lengths of successive runs of 0's in the Thue-Morse sequence A010059. %C A104248 Also lengths of successive runs of 2's in the Thue-Morse sequence A001285. %C A104248 A variant of A036577, suggested by p. 4421 of Grytczuk. %H A104248 Ray Chandler, <a href="/A104248/b104248.txt">Table of n, a(n) for n=1..10922</a> %H A104248 Jaroslaw Grytczuk, <a href="http://dx.doi.org/10.1016/j.disc.2007.08.039">Thue type problems for graphs, points and numbers</a>, Discrete Math., 308 (2008), 4419-4429. %F A104248 a(n) = A026465(2n). %e A104248 A010060 begins 011010011001011010010110011010011... so the runs of 1's have lengths 2 1 2 1 2 1 1 2 2 1 2 1 2 2 1 1 2 1 ... %t A104248 Map[Length,Most[Split[ThueMorse[Range[500]]]][[;;;;2]]] (* _Paolo Xausa_, Dec 19 2023 *) %t A104248 Length/@DeleteCases[Split[ThueMorse[Range[450]]],_?(#[[1]]==0&)] (* _Harvey P. Dale_, Nov 09 2024 *) %o A104248 (Python) %o A104248 def A104248(n): %o A104248 def iterfun(f,n=0): %o A104248 m, k = n, f(n) %o A104248 while m != k: m, k = k, f(k) %o A104248 return m %o A104248 def f(x): %o A104248 c, s = x, bin(x)[2:] %o A104248 l = len(s) %o A104248 for i in range(l&1^1,l,2): %o A104248 c -= int(s[i])+int('0'+s[:i],2) %o A104248 return c %o A104248 return iterfun(lambda x:f(x)+(n<<1),n<<1)-iterfun(lambda x:f(x)+(n<<1)-1,(n<<1)-1) # _Chai Wah Wu_, Jan 30 2025 %Y A104248 Cf. A010060, A036577, A143331. %Y A104248 Cf. A001285, A010059, A026465. %K A104248 nonn,easy %O A104248 1,1 %A A104248 _N. J. A. Sloane_, Aug 05 2008 %E A104248 Edited and extended by _Ray Chandler_, Aug 08 2008