cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104253 Row sums of triangle in A116925.

Original entry on oeis.org

1, 3, 6, 11, 21, 45, 113, 339, 1221, 5273, 27237, 167985, 1235820, 10838397, 113281002, 1410702627, 20928310905, 369834091857, 7784253038081, 195135698311989, 5825657474768916, 207120610510791805, 8769156584345509398, 442116458092151729925, 26542966216935028587896
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2006

Keywords

Crossrefs

Cf. A116925.

Programs

  • Mathematica
    Table[Sum[1 + Sum[Product[Binomial[n-1, n - s + j]/Binomial[n-1, j], {j, 0, k-1}], {k, 1, s}], {s, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 02 2021 *)
    Table[BarnesG[1 + n] * Sum[BarnesG[1 + k] * BarnesG[1 + n - s] * BarnesG[1 - k + s] / (BarnesG[1 - k + n] * BarnesG[1 + k + n - s] * BarnesG[1 + s]), {s, 0, n}, {k, 0, s}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2021 *)

Formula

a(n) ~ c * BarnesG(n/3 + 1)^3 * BarnesG(n+1) / BarnesG(2*n/3 + 1)^3 ~ c * exp(1/12) * 3^(n^2/2) / (A * n^(1/12) * 2^(2*n^2/3 - 1/4)), where c = 5.2335188744705752675068634418929940491557563366762252523140713171090086689943... and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 02 2021