A104253 Row sums of triangle in A116925.
1, 3, 6, 11, 21, 45, 113, 339, 1221, 5273, 27237, 167985, 1235820, 10838397, 113281002, 1410702627, 20928310905, 369834091857, 7784253038081, 195135698311989, 5825657474768916, 207120610510791805, 8769156584345509398, 442116458092151729925, 26542966216935028587896
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..162
Crossrefs
Cf. A116925.
Programs
-
Mathematica
Table[Sum[1 + Sum[Product[Binomial[n-1, n - s + j]/Binomial[n-1, j], {j, 0, k-1}], {k, 1, s}], {s, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 02 2021 *) Table[BarnesG[1 + n] * Sum[BarnesG[1 + k] * BarnesG[1 + n - s] * BarnesG[1 - k + s] / (BarnesG[1 - k + n] * BarnesG[1 + k + n - s] * BarnesG[1 + s]), {s, 0, n}, {k, 0, s}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2021 *)
Formula
a(n) ~ c * BarnesG(n/3 + 1)^3 * BarnesG(n+1) / BarnesG(2*n/3 + 1)^3 ~ c * exp(1/12) * 3^(n^2/2) / (A * n^(1/12) * 2^(2*n^2/3 - 1/4)), where c = 5.2335188744705752675068634418929940491557563366762252523140713171090086689943... and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 02 2021