This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104264 #22 Mar 06 2021 12:56:30 %S A104264 3,6,19,44,136,376,1061,2985,8431,24009,67983,193359,549697,1563545, %T A104264 4446173,12650545,35999714,102439796,291532841,829634988,2360947327, %U A104264 6719171580,19122499510,54423038535,154888366195 %N A104264 Number of n-digit squares with no zero digits. %C A104264 Comments from _David W. Wilson_, Feb 26 2005: (Start) %C A104264 "There are approximately s(d) = (10^d)^(1/2) - (10^(d-1))^(1/2) d-digit squares. A random d-digit number has the probability p(d) = (9/10)^(d-1) of being zeroless (exponent d-1 as opposed to d because the first digit is not zero). So we expect p(d)s(d) zeroless d-digit squares. %C A104264 "For d = 1 through 12, we get (truncating): 1, 5, 15, 44, 127, 363, 1034, 2943, 8377, 23841, 67854, 193117, ... The elements grow approximately geometrically with limit ratio (9/10)*10^(1/2) = 2.846+. %C A104264 "The same naive estimate can easily be generalize to k-th powers, giving the estimate s(d) = (10^d)^(1/k) - (10^(d-1))^(1/k) for d-digit k-th powers. p(d) remains the same. The resulting estimates have ratio (9/10)*10^(1/k). %C A104264 "We should expect an infinite number of zeroless k-th powers when this ratio is >= 1, which it is for k <= 21. For k >= 22, the ratio is < 1 and we should expect a finite number of zeroless k-th powers." (End) %e A104264 a(3) = #{121, 144, 169, 196, 225, 256, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 961} = 19. %o A104264 (Python) %o A104264 def aupton(terms): %o A104264 c, k, kk = [0 for i in range(terms)], 1, 1 %o A104264 while kk < 10**terms: %o A104264 s = str(kk) %o A104264 c[len(s)-1], k, kk = c[len(s)-1] + (s.count('0')==0), k+1, kk + 2*k + 1 %o A104264 return c %o A104264 print(aupton(14)) # _Michael S. Branicky_, Mar 06 2021 %Y A104264 Cf. A052041, A104265, A104266, A075415, A102807. %K A104264 nonn,base,more %O A104264 1,1 %A A104264 _Reinhard Zumkeller_ and _Ron Knott_, Feb 26 2005 %E A104264 a(14)-a(18) from _Donovan Johnson_, Nov 05 2009 %E A104264 a(19)-a(21) from _Donovan Johnson_, Mar 23 2011 %E A104264 a(22)-a(25) from _Donovan Johnson_, Jan 29 2013