A104287 Decimal expansion of log base phi of 2.
1, 4, 4, 0, 4, 2, 0, 0, 9, 0, 4, 1, 2, 5, 5, 6, 4, 7, 9, 0, 1, 7, 5, 5, 1, 4, 9, 9, 5, 8, 7, 8, 6, 3, 8, 0, 2, 4, 5, 8, 6, 0, 4, 1, 4, 2, 6, 8, 4, 0, 5, 6, 0, 8, 1, 6, 4, 5, 4, 4, 1, 7, 2, 9, 5, 6, 6, 5, 1, 3, 2, 8, 4, 3, 5, 2, 9, 9, 0, 3, 6, 7, 2, 7, 9, 5, 2, 8, 2, 2, 0, 4, 9, 7, 3, 5, 7, 5, 9, 1, 6, 3, 1, 2, 7
Offset: 1
Examples
1.4404200904125564790175514995878638024586041426840560816454417295665...
References
- Krassimir Atanassova, Vassia Atanassova, Anthony Shannon and John Turner, New Visual Perspectives on Fibonacci Numbers, World Scientific, 2002, p. 218.
Links
- Greg Kuperberg, Breaking the cubic barrier in the Solovay-Kitaev algorithm, QIP2023 video (2023).
- J. C. Turner, Some fractals in goldpoint geometry, The Fibonacci Quarterly, Vol. 41, No. 1 (2003), pp. 63-71.
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[Log[2]/Log[GoldenRatio], 10, 100][[1]] (* Amiram Eldar, Nov 24 2020 *)
-
PARI
log(2)/log((sqrt(5)+1)/2) \\ Charles R Greathouse IV, May 15 2019
Formula
Equals log(2) / log((sqrt(5)+1)/2).
Comments