cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104382 Triangle, read by rows, where T(n,k) equals number of distinct partitions of triangular number n*(n+1)/2 into k different summands for n>=k>=1.

This page as a plain text file.
%I A104382 #28 Feb 16 2025 08:32:56
%S A104382 1,1,1,1,2,1,1,4,4,1,1,7,12,6,1,1,10,27,27,10,1,1,13,52,84,57,14,1,1,
%T A104382 17,91,206,221,110,21,1,1,22,147,441,674,532,201,29,1,1,27,225,864,
%U A104382 1747,1945,1175,352,41,1,1,32,331,1575,4033,5942,5102,2462,598,55,1,1,38,469
%N A104382 Triangle, read by rows, where T(n,k) equals number of distinct partitions of triangular number n*(n+1)/2 into k different summands for n>=k>=1.
%C A104382 Secondary diagonal equals partitions of n - 1 (A000065).
%C A104382 Third diagonal is A104384.
%C A104382 Third column is A104385.
%C A104382 Row sums are A104383 where limit_{n --> inf} A104383(n+1)/A104383(n) = exp(sqrt(Pi^2/6)) = 3.605822247984...
%D A104382 Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
%H A104382 Alois P. Heinz, <a href="/A104382/b104382.txt">Rows n = 1..55, flattened</a>
%H A104382 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A104382 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionQ.html">Partition Function Q.</a>
%F A104382 T(n, 1) = T(n, n) = 1.
%F A104382 T(n, n-1) = A000065(n).
%F A104382 T(n, 2) = [(n*(n+1)/2-1)/2].
%F A104382 From _Álvar Ibeas_, Jul 23 2020: (Start)
%F A104382 T(n, k) = A008284((n-k+1)*(n+k)/2, k).
%F A104382 T(n, k) = A026820((n-k)*(n+k+1)/2, k), with A026820(0, k) = 1. (End)
%e A104382 Rows begin:
%e A104382 1;
%e A104382 1, 1;
%e A104382 1, 2, 1;
%e A104382 1, 4, 4, 1;
%e A104382 1, 7, 12, 6, 1;
%e A104382 1, 10, 27, 27, 10, 1;
%e A104382 1, 13, 52, 84, 57, 14, 1;
%e A104382 1, 17, 91, 206, 221, 110, 21, 1;
%e A104382 1, 22, 147, 441, 674, 532, 201, 29, 1;
%e A104382 1, 27, 225, 864, 1747, 1945, 1175, 352, 41, 1;
%e A104382 1, 32, 331, 1575, 4033, 5942, 5102, 2462, 598, 55, 1; ...
%o A104382 (PARI) T(n,k)=if(n<k || k<1,0,polcoeff(polcoeff( prod(i=1,n*(n+1)/2,1+y*x^i,1+x*O(x^(n*(n+1)/2))),n*(n+1)/2,x),k,y))
%o A104382 for(n=1,12,for(k=1,n,print1(T(n,k),", "));print(""))
%Y A104382 Cf. A008289, A000009, A000065, A104383, A104384, A104385.
%K A104382 nonn,tabl
%O A104382 1,5
%A A104382 _Paul D. Hanna_, Mar 04 2005