This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104383 #21 Feb 16 2025 08:32:56 %S A104383 1,1,2,4,10,27,76,222,668,2048,6378,20132,64234,206848,671418,2194432, %T A104383 7215644,23853318,79229676,264288462,884987529,2973772212,10024300890, %U A104383 33888946600,114872472064,390334057172,1329347719190,4536808055808,15513418629884 %N A104383 Number of distinct partitions of triangular numbers n*(n+1)/2. %C A104383 Equals row sums of triangle A104382. Asymptotics: a(n) ~ exp(Pi*sqrt((n^2+n)/6))/(2*6^(1/4))/(n^2+n)^(3/4). %D A104383 Abramowitz, M. and Stegun, I. A. (Editors). "Partitions into Distinct Parts." S24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972. %H A104383 G. C. Greubel, <a href="/A104383/b104383.txt">Table of n, a(n) for n = 0..1000</a> %H A104383 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A104383 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionQ.html">Partition Function Q.</a> %F A104383 Limit_{n-->inf} a(n+1)/a(n) = exp(sqrt(Pi^2/6)) = 3.605822247984... %F A104383 a(n) = A000009(A000217(n)). - _Alois P. Heinz_, Nov 24 2016 %p A104383 with(numtheory): %p A104383 b:= proc(n) option remember; `if`(n=0, 1, add(add( %p A104383 `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) %p A104383 end: %p A104383 a:= n-> b(n*(n+1)/2): %p A104383 seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 24 2016 %t A104383 Join[{1},PartitionsQ/@Accumulate[Range[30]]] (* _Harvey P. Dale_, Dec 29 2012 *) %o A104383 (PARI) {a(n)=polcoeff(prod(k=1,n*(n+1)/2,1+x^k,1+x*O(x^(n*(n+1)/2))),n*(n+1)/2)} %Y A104383 Cf. A000009, A000217, A066655, A104382. %K A104383 nonn %O A104383 0,3 %A A104383 _Paul D. Hanna_, Mar 04 2005 %E A104383 a(0)=1 prepended by _Alois P. Heinz_, Aug 05 2016