This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104395 #29 Feb 16 2025 08:32:56 %S A104395 126,182,217,237,247,251,266,301,321,331,335,357,377,386,387,391,412, %T A104395 421,422,426,441,442,446,451,455,456,477,497,507,511,532,542,546,551, %U A104395 561,562,566,576,581,586,591,595,606,616,620,626,630,642,646,650 %N A104395 Sums of 5 distinct positive pentatope numbers (A000332). %C A104395 Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers. %D A104395 Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996. %H A104395 Robert Israel, <a href="/A104395/b104395.txt">Table of n, a(n) for n = 1..10000</a> %H A104395 Hyun Kwang Kim, <a href="http://dx.doi.org/10.1090/S0002-9939-02-06710-2">On Regular Polytope Numbers</a>, Proc. Amer. Math. Soc., 131 (2003), 65-75. %H A104395 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentatopeNumber.html">Pentatope Number</a>. %F A104395 a(n) = Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4). %p A104395 N:= 1000: # for terms <= N %p A104395 ptop:= n -> n*(n+1)*(n+2)*(n+3)/24: %p A104395 P:= 1: %p A104395 for i from 1 while ptop(i) < N do %p A104395 P:= P * (1 + x*y^ptop(i)) %p A104395 od: %p A104395 sort(map(degree,convert(convert(series(coeff(P,x,5),y,N+1),polynom),list))); %p A104395 # _Robert Israel_, Nov 20 2023 %Y A104395 Cf. A000332, A100009, A102857, A104392, A104393, A104394. %K A104395 easy,nonn %O A104395 1,1 %A A104395 _Jonathan Vos Post_, Mar 05 2005 %E A104395 Extended by _Ray Chandler_, Mar 05 2005