cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104396 Sums of 6 distinct positive pentatope numbers (A000332).

This page as a plain text file.
%I A104396 #20 Feb 16 2025 08:32:56
%S A104396 252,336,392,427,447,456,457,461,512,547,567,577,581,596,621,631,651,
%T A104396 661,665,677,687,707,712,717,721,732,742,746,752,756,761,772,776,786,
%U A104396 796,816,826,830,841,852,872,881,882,886,897,907,916,917,921,932
%N A104396 Sums of 6 distinct positive pentatope numbers (A000332).
%C A104396 Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24.
%C A104396 Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
%D A104396 Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
%H A104396 Hyun Kwang Kim, <a href="http://dx.doi.org/10.1090/S0002-9939-02-06710-2">On Regular Polytope Numbers</a>, Proc. Amer. Math. Soc., 131 (2003), 65-75.
%H A104396 J. V. Post, <a href="http://www.magicdragon.com/poly.html">Table of Polytope Numbers, Sorted, Through 1,000,000</a>.
%H A104396 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentatopeNumber.html">Pentatope Number</a>.
%F A104396 a(n) = Ptop(f) + Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive f=/=g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
%Y A104396 Cf. A000332, A100009, A102857, A104392, A104393, A104394, A104395.
%K A104396 easy,nonn
%O A104396 1,1
%A A104396 _Jonathan Vos Post_, Mar 05 2005
%E A104396 Extended by _Ray Chandler_, Mar 05 2005