This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104399 #16 Feb 16 2025 08:32:56 %S A104399 1287,1507,1672,1792,1793,1876,1932,1958,1967,1987,1997,2001,2078, %T A104399 2157,2162,2178,2218,2253,2273,2283,2287,2298,2322,2382,2438,2442, %U A104399 2463,2473,2493,2503,2507,2526,2542,2547,2582,2603,2612,2617,2637,2638,2647,2651 %N A104399 Sums of 9 distinct positive pentatope numbers (A000332). %C A104399 Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers. %D A104399 Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996. %H A104399 Hyun Kwang Kim, <a href="http://dx.doi.org/10.1090/S0002-9939-02-06710-2">On regular polytope numbers</a>, Proc. Amer. Math. Soc. 131 (2003), 65-75. %H A104399 J. V. Post, <a href="http://www.magicdragon.com/poly.html">Table of Polytope Numbers, Sorted, Through 1,000,000</a>. %H A104399 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentatopeNumber.html">Pentatope Number</a>. %F A104399 a(n) = Ptop(c) + Ptop(d) + Ptop(e) + Ptop(f) + Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive c=/=d=/=e=/=f=/=g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4). %Y A104399 Cf. A000332, A100009, A102857, A104392, A104393, A104394, A104395, A104396, A104397, A104398. %K A104399 easy,nonn %O A104399 1,1 %A A104399 _Jonathan Vos Post_, Mar 05 2005 %E A104399 Extended by _Ray Chandler_, Mar 05 2005