This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104404 #28 Feb 16 2025 08:32:56 %S A104404 1,1,1,2,1,1,1,4,2,1,1,2,1,1,1,6,1,2,1,2,1,1,1,4,2,1,3,2,1,1,1,8,1,1, %T A104404 1,4,1,1,1,4,1,1,1,2,2,1,1,6,2,2,1,2,1,3,1,4,1,1,1,2,1,1,2,12,1,1,1,2, %U A104404 1,1,1,8,1,1,2,2,1,1,1,6,5,1,1,2,1,1,1,4,1,2,1,2,1,1,1,8,1,2,2,4,1,1 %N A104404 Number of groups of order n all of whose subgroups are normal. %C A104404 A finite non-Abelian group has all of its subgroups normal precisely when it is the direct product of the quaternion group of order 8, a (possibly trivial) elementary Abelian 2-group, and an Abelian group of odd order. [Carmichael, p. 114] - _Eric M. Schmidt_, Jan 12 2014 %D A104404 Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956. %D A104404 John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987. %H A104404 Hans Havermann, <a href="/A104404/b104404.txt">Table of n, a(n) for n = 1..10000</a> %H A104404 Boris Horvat, Gašper Jaklič, and Tomaž Pisanski, <a href="https://hrcak.srce.hr/clanak/1339">On the number of hamiltonian groups</a>, Mathematical Communications, Vol. 10, No. 1 (2005), pp. 89-94; <a href="https://arxiv.org/abs/math/0503183">arXiv preprint</a>, arXiv:math/0503183 [math.CO], 2005. %H A104404 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AbelianGroup.html">Abelian Group</a>. %H A104404 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianGroup.html">Hamiltonian Group</a>. %F A104404 The number a(n) of all groups of order n all of whose subgroups are normal is given as a(n) = b(n) + h(n), where b(n) denotes the number of Abelian groups of order n and h(n) denotes the number of Hamiltonian groups of order n. %F A104404 a(n) = A000688(n) + A104488(n). - _Andrew Howroyd_, Aug 08 2018 %F A104404 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * (1 + A048651/4) = 2.46053840757488111675... . - _Amiram Eldar_, Sep 23 2023 %t A104404 orders[n_]:=Map[Last, FactorInteger[n]]; b[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=b[e[n]]; h[n_]:=0; a[n_]:= b[n]+h[n]; %o A104404 (PARI) a(n)={my(e=valuation(n, 2)); my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i]))*(numbpart(e) + (e>=3))} \\ _Andrew Howroyd_, Aug 08 2018 %Y A104404 Cf. A000001, A000688, A021002, A048651, A104488. %K A104404 nonn,easy,mult %O A104404 1,4 %A A104404 Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), _Tomaz Pisanski_, Apr 19 2005 %E A104404 Keyword:mult added by _Andrew Howroyd_, Aug 08 2018