cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104471 Triangle of degree numbers for certain polynomials.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 5, 4, 1, 5, 8, 8, 4, 1, 6, 9, 11, 8, 4, 1, 7, 12, 12, 15, 8, 4, 1, 8, 13, 18, 16, 15, 8, 4, 1, 9, 16, 19, 22, 21, 15, 8, 4, 1, 10, 17, 22, 23, 27, 21, 15, 8, 4, 1, 11, 20, 26, 30, 28, 33, 21, 15, 8, 4, 1, 12, 21, 29, 34, 35, 34, 33, 21, 15, 8, 4, 1, 13, 24, 30, 37, 39, 41
Offset: 1

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

This is the rectangular array ay(N,m):=sum(j*floor(N/j),j=1..m), m>=1, N>=1, written as a triangle a(n,m):=ay(n-m+1,m).
If A(j,x) is a polynomial of exact degree N(j):=floor(N/j), with some N>=1 and j=1,2,..., then F(m,x):=product(A(j,x^j),j=1..m) has degree A(N,m). This product appears in Fine's identity (on the lhs) if a finite product with m factors is taken. See the Riordan reference p. 182 eq.(20).
This choice of the degree N(j) guarantees that in F(m,x) all coefficients of x^n for n=0,...,N are correctly given. Due to Fine's identity (on the rhs) the coefficient of x^n of F(m,x) is given by the sum over all partitions of n with number of parts m of the product(a(j,k(j)),j=1..m), where a(j,p) is [x^p]A(j,x) and k(j)>=0 is the exponent of j in the considered partition of n into m parts. If n

Examples

			[1];[2,1];[3,4,1];[4,5,4,1];[5,8,8,4,1];...
a(5,3)=ay(3,3)=8 because for N=3 and m=3 one has N(1)=3, N(2)=1 and N(3)=1 and (a(1,0)+ a(1,1)*x^1+ ...+a(1,3)*x^3)*(a(2,0)+a(2,1)*x^2)*(a(3,0)+a(3,1)*x^3) has exact degree 3+2+3=8.
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968.

Crossrefs

See triangle A104472 where repeated numbers are omitted. a(2*n-1, n)=A024916(n).

Formula

a(n, m)= sum(j*floor((n-m+1)/j), j=1..m), n>=m>=1, else 0.