A104514 a(n) = least number k > 1 of consecutive integers which sum to 2*n; or a(n) = 0 if n is a power of 2.
0, 0, 3, 0, 4, 3, 4, 0, 3, 5, 4, 3, 4, 7, 3, 0, 4, 3, 4, 5, 3, 8, 4, 3, 4, 8, 3, 7, 4, 3, 4, 0, 3, 8, 4, 3, 4, 8, 3, 5, 4, 3, 4, 11, 3, 8, 4, 3, 4, 5, 3, 13, 4, 3, 4, 7, 3, 8, 4, 3, 4, 8, 3, 0, 4, 3, 4, 16, 3, 5, 4, 3, 4, 8, 3, 16, 4, 3, 4, 5, 3, 8, 4, 3, 4, 8, 3, 11, 4, 3, 4, 16, 3, 8, 4, 3, 4, 7, 3, 5, 4, 3, 4
Offset: 1
Keywords
Examples
a(9) = 3 because 3+4+5+6 = 5+6+7 = 2*9 = 18.
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 67.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) local divs,r; divs:= select(t -> t::odd or (4*n/t)::odd, numtheory:-divisors(4*n) minus {1,4*n}); if nops(divs)=0 then 0 else min(divs) fi end proc: seq(a(n), n=1..200); # Robert Israel, May 06 2015
-
Mathematica
f[n_] := Block[{r = Ceiling[n/2]}, If[IntegerQ[Log[2, n]], 0, m = Range[r]; lst = Flatten[Table[m[[k]], {i, r}, {j, i + 1, r}, {k, i, j}], 1]; Min[Length /@ lst[[Flatten[Position[Plus @@@ lst, n]]]]]]]; Table[f[2n], {n, 103}]
Formula
a(n) = A163169(2*n). Robert Israel, May 06 2015
Comments