A104521 Fixed point of the morphism 0->{1}, 1->{1,0,1}.
1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0
Offset: 0
Keywords
Examples
The evolution starting with 0 is: 0 1 101 1011101 10111011011011101 10111011011011101101110110111011011011101
Links
- Joerg Arndt, Matters Computational (The Fxtbook), section 38.12.1 "Pell palindromes", p. 759 (fast algorithm to compute a function whose value at x=1/2 gives the constant 0.7321604330... whose binary value is 0.1011101101101...)
Programs
-
Mathematica
Nest[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0, 1}}] &, 0, 7] (* Robert G. Wilson v, Apr 23 2005 *) h[n_] := Floor[n / Sqrt[2] + 1/2]; Table[h[n + 1] - h[n], {n, 0, 104}] (* Peter Luschny, Mar 06 2024 *)
-
zsh
#! /usr/bin/env zsh function N { local w=$1; for (( i=0; i<7; i+=1 )); do echo $w; w=$(echo $w | S); done } function S { sed 's/1/1_1/g; s/0/1/g; s/_/0/g;' } # 0->1, 1->101 N "0" # Joerg Arndt, Apr 24 2005
Formula
a(n) = floor((n+2)a + b)-floor((n+1)a+b), where a = sqrt(2)/2, b = (3-sqrt(2))/2. - Jeffrey Shallit, Mar 06 2024
a(n) = round((n+1)/sqrt(2))-round(n/sqrt(2)). - Chai Wah Wu, Mar 07 2024
Comments