cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104525 The number of hierarchical orderings among the parts of the integer partitions of the integer n.

This page as a plain text file.
%I A104525 #21 Dec 10 2016 15:05:58
%S A104525 1,4,12,40,123,395,1227,3851,11944,37032,114144,351040,1075316,
%T A104525 3285398,10007731,30409157,92169561,278738219,841132013,2533138770,
%U A104525 7614144053,22845435104,68427663680,204623945617,610951554377,1821438443615,5422608839874,16121857331124
%N A104525 The number of hierarchical orderings among the parts of the integer partitions of the integer n.
%C A104525 Euler transform of A055887 = number of ordered partitions of partitions.
%H A104525 Alois P. Heinz, <a href="/A104525/b104525.txt">Table of n, a(n) for n = 1..750</a>
%H A104525 N. J. A. Sloane and Thomas Wieder, <a href="http://arXiv.org/abs/math.CO/0307064">The Number of Hierarchical Orderings</a>, Order 21 (2004), 83-89.
%H A104525 Thomas Wieder, <a href="/A104525/a104525.txt">Comments on A104525</a>
%e A104525 Let * denote an element, let : denote separator among different levels within a hierarchy, let | denote a separator between different hierarchies. Furthermore, the braces {} indicate a frame. For n=3 one has a(3) = 12 because:
%e A104525 {*:**}, {*:*}:{*}, {*}:{**}, {*:*:*}, {*}:{*}:{*}, {**}|{*}, {*}|{*:*}, {*}|{*}|{*}, {**}:{*}, {*}:{*:*}, {*}:{*}|{*}, {***}.
%p A104525 We can use combstruct to actually construct the structures A104525(n). %1 := Sequence(Set(Set(Z))).
%p A104525 with(combinat): with (numtheory): b:= proc(n) local k; option remember; `if`(n=0, 1, add (numbpart(k) * b(n-k), k=1..n)) end: a:= proc(n) option remember; `if` (n=0, 1, add (add (d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq (a(n), n=1..30); # _Alois P. Heinz_, Feb 02 2009
%t A104525 max = 30; A055887 = CoefficientList[1/(2 - 1/QPochhammer[x, x]) + O[x]^(max + 1), x] ; s = 1/Product[(1 - x^n)^A055887[[n + 1]], {n, 1, max}] + O[x]^max; CoefficientList[s, x] // Rest (* _Jean-François Alcover_, Jan 10 2016 *)
%Y A104525 Cf. A034691, A034899, A055887, A104460, A104500, A109186.
%K A104525 nonn
%O A104525 1,2
%A A104525 _Thomas Wieder_, Mar 12 2005. Definition revised Mar 28 2009
%E A104525 More terms from _Alois P. Heinz_, Feb 02 2009