cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104547 Number of Schroeder paths of length 2n having no UHD, UHHD, UHHHD, ..., where U=(1,1), D=(1,-1), H=(2,0).

This page as a plain text file.
%I A104547 #16 Jan 03 2023 03:55:35
%S A104547 1,2,5,16,60,245,1051,4660,21174,98072,461330,2197997,10585173,
%T A104547 51443379,251982793,1242734592,6165798680,30754144182,154123971932,
%U A104547 775669589436,3918703613376,19866054609754,101029857327802,515275408644773
%N A104547 Number of Schroeder paths of length 2n having no UHD, UHHD, UHHHD, ..., where U=(1,1), D=(1,-1), H=(2,0).
%C A104547 A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
%C A104547 Equals binomial transform of A119370. - _Paul D. Hanna_, May 17 2006
%H A104547 G. C. Greubel, <a href="/A104547/b104547.txt">Table of n, a(n) for n = 0..1000</a>
%F A104547 a(n) = A104546(n, 0).
%F A104547 G.f.: G = G(z) satisfies G = 1 + z*G + z*G(G - z/(1-z)).
%F A104547 G.f.: (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)). - _Paul D. Hanna_, May 17 2006
%F A104547 D-finite with recurrence (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 2*(14*n-37)*a(n-3) - 2*(8*n-31)*a(n-4) + 4*(n-5)*a(n-5). - _R. J. Mathar_, Jul 26 2022
%e A104547 a(2)=5 because we have HH, HUD, UDH, UDUD and UUDD (UHD does not qualify).
%t A104547 CoefficientList[Series[(1-2*x+2*x^2 -Sqrt[1-8*x+16*x^2-12*x^3+4*x^4] )/(2*x*(1-x)), {x,0,40}], x] (* _G. C. Greubel_, Jan 02 2023 *)
%o A104547 (PARI) {a(n)=polcoeff(2*(1-x)/(1-2*x+2*x^2 + sqrt(1-8*x+16*x^2-12*x^3+4*x^4+x*O(x^n))),n)} \\ _Paul D. Hanna_, May 17 2006
%o A104547 (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-2*x+2*x^2 - Sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)) )); // _G. C. Greubel_, Jan 02 2023
%o A104547 (SageMath)
%o A104547 def A104547_list(prec):
%o A104547     P.<x> = PowerSeriesRing(ZZ, prec)
%o A104547     return P( (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)) ).list()
%o A104547 A104547_list(40) # _G. C. Greubel_, Jan 02 2023
%Y A104547 Cf. A006318, A104546, A119370.
%K A104547 nonn
%O A104547 0,2
%A A104547 _Emeric Deutsch_, Mar 14 2005