This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104548 #13 Feb 16 2025 08:32:57 %S A104548 0,1,0,1,1,0,1,3,3,0,1,6,15,15,0,1,10,45,105,105,0,1,15,105,420,945, %T A104548 945,0,1,21,210,1260,4725,10395,10395,0,1,28,378,3150,17325,62370, %U A104548 135135,135135,0,1,36,630,6930,51975,270270,945945,2027025,2027025,0 %N A104548 Triangle read by rows giving coefficients of Bessel polynomial p_n(x). %H A104548 G. C. Greubel, <a href="/A104548/b104548.txt">Rows n = 0..50 of the triangle, flattened</a> %H A104548 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BesselPolynomial.html">Bessel Polynomial</a> %F A104548 From _G. C. Greubel_, Jan 02 2023: (Start) %F A104548 T(n, k) = binomial(n-1,k)*(n+k-1)!/(2^k*(n-1)!), with T(n, n) = 0. %F A104548 Sum_{k=0..n} T(n, k) = A001515(n-1). %F A104548 Sum_{k=0..n} (-1)^k*T(n, k) = A000806(n-1). %F A104548 Sum_{k=0..floor(n/2)} T(n-k, k) = A000085(n-1). %F A104548 Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A001464(n-1). (End) %e A104548 Bessel polynomials begin with: %e A104548 x; %e A104548 x + x^2; %e A104548 3*x + 3*x^2 + x^3; %e A104548 15*x + 15*x^2 + 6*x^3 + x^4; %e A104548 105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5; %e A104548 ... %e A104548 Triangle of coefficients begins as: %e A104548 0; %e A104548 1, 0; %e A104548 1, 1 0; %e A104548 1, 3, 3 0; %e A104548 1, 6, 15, 15 0; %e A104548 1, 10, 45, 105, 105 0; %e A104548 1, 15, 105, 420, 945, 945 0; %e A104548 1, 21, 210, 1260, 4725, 10395, 10395 0; %e A104548 1, 28, 378, 3150, 17325, 62370, 135135, 135135 0; %t A104548 T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)]; %t A104548 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 02 2023 *) %o A104548 (Magma) %o A104548 A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >; %o A104548 [A104548(n,k): k in [0..n], n in [0..13]]; // _G. C. Greubel_, Jan 02 2023 %o A104548 (SageMath) %o A104548 def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1)) %o A104548 flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jan 02 2023 %Y A104548 Essentially the same as A001498 (the main entry). %Y A104548 Cf. A000085, A000806, A001464, A001515. %K A104548 nonn,tabl %O A104548 0,8 %A A104548 _Eric W. Weisstein_, Mar 14 2005 %E A104548 T(0, 0) = 0 prepended by _G. C. Greubel_, Jan 02 2023