cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104550 Number of horizontal segments in all Schroeder paths of length 2n (a horizontal segment is a maximal string of horizontal steps).

This page as a plain text file.
%I A104550 #36 May 22 2025 11:15:51
%S A104550 1,4,20,104,552,2972,16172,88720,489872,2719028,15157188,84799992,
%T A104550 475894200,2677788492,15102309468,85347160608,483183316512,
%U A104550 2739851422820,15558315261812,88462135512712,503569008273992,2869602773253884,16368396446913420,93449566652932784,533954950648248752
%N A104550 Number of horizontal segments in all Schroeder paths of length 2n (a horizontal segment is a maximal string of horizontal steps).
%C A104550  A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
%H A104550 Vincenzo Librandi, <a href="/A104550/b104550.txt">Table of n, a(n) for n = 1..200</a>
%F A104550 G.f.: (1-x)*(1-x-sqrt(1-6*x+x^2))/(2*sqrt(1-6*x+x^2)).
%F A104550 a(n) = Jacobi_P(n+1,-1,-2,3). [_Paul Barry_, Sep 27 2009]
%F A104550 Recurrence: n*a(n) = (7*n-6)*a(n-1) - (7*n-22)*a(n-2) + (n-4)*a(n-3). - _Vaclav Kotesovec_, Oct 17 2012
%F A104550 a(n) ~ sqrt(6*sqrt(2)-8)*(3+2*sqrt(2))^n/(2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 17 2012
%F A104550 a(n) = Hyper2F1([-n, n-1], [1], -1). - _Peter Luschny_, Aug 02 2014
%F A104550 a(n) = Sum_{k=0..n+1} C(n+1,k)*C(n+k-1,k). - _Vladimir Kruchinin_, Jun 15 2020
%e A104550 a(2)=4 because we have (HH),(H)UD,UD(H),U(H)D,UDUD and UUDD; the 4 horizontal segments are shown between parentheses.
%p A104550 G:=(1-z)*(1-z-sqrt(1-6*z+z^2))/2/sqrt(1-6*z+z^2): Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..24);
%p A104550 a := n -> hypergeom([-n, n-1], [1], -1);
%p A104550 seq(round(evalf(a(n),36)),n=1..23); # _Peter Luschny_, Aug 02 2014
%t A104550 Rest[CoefficientList[Series[(1-x)*(1-x-Sqrt[1-6*x+x^2])/ (2*Sqrt[1 -6*x+x^2]), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Oct 17 2012 *)
%o A104550 (PARI) x='x+O('x^66); Vec((1-x)*(1-x-sqrt(1-6*x+x^2))/(2*sqrt(1-6*x+x^2))) \\ _Joerg Arndt_, May 13 2013
%o A104550 (Maxima) a(n):=sum(binomial(n+1,k)*binomial(n+k-1,k),k,0,n+1); /* _Vladimir Kruchinin_, Jun 15 2020 */
%Y A104550 Cf. A006318, A104549, A002002 (partial sums).
%Y A104550 Cf. A035028.
%K A104550 nonn
%O A104550 1,2
%A A104550 _Emeric Deutsch_, Mar 14 2005