This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104550 #36 May 22 2025 11:15:51 %S A104550 1,4,20,104,552,2972,16172,88720,489872,2719028,15157188,84799992, %T A104550 475894200,2677788492,15102309468,85347160608,483183316512, %U A104550 2739851422820,15558315261812,88462135512712,503569008273992,2869602773253884,16368396446913420,93449566652932784,533954950648248752 %N A104550 Number of horizontal segments in all Schroeder paths of length 2n (a horizontal segment is a maximal string of horizontal steps). %C A104550 A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318). %H A104550 Vincenzo Librandi, <a href="/A104550/b104550.txt">Table of n, a(n) for n = 1..200</a> %F A104550 G.f.: (1-x)*(1-x-sqrt(1-6*x+x^2))/(2*sqrt(1-6*x+x^2)). %F A104550 a(n) = Jacobi_P(n+1,-1,-2,3). [_Paul Barry_, Sep 27 2009] %F A104550 Recurrence: n*a(n) = (7*n-6)*a(n-1) - (7*n-22)*a(n-2) + (n-4)*a(n-3). - _Vaclav Kotesovec_, Oct 17 2012 %F A104550 a(n) ~ sqrt(6*sqrt(2)-8)*(3+2*sqrt(2))^n/(2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 17 2012 %F A104550 a(n) = Hyper2F1([-n, n-1], [1], -1). - _Peter Luschny_, Aug 02 2014 %F A104550 a(n) = Sum_{k=0..n+1} C(n+1,k)*C(n+k-1,k). - _Vladimir Kruchinin_, Jun 15 2020 %e A104550 a(2)=4 because we have (HH),(H)UD,UD(H),U(H)D,UDUD and UUDD; the 4 horizontal segments are shown between parentheses. %p A104550 G:=(1-z)*(1-z-sqrt(1-6*z+z^2))/2/sqrt(1-6*z+z^2): Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..24); %p A104550 a := n -> hypergeom([-n, n-1], [1], -1); %p A104550 seq(round(evalf(a(n),36)),n=1..23); # _Peter Luschny_, Aug 02 2014 %t A104550 Rest[CoefficientList[Series[(1-x)*(1-x-Sqrt[1-6*x+x^2])/ (2*Sqrt[1 -6*x+x^2]), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Oct 17 2012 *) %o A104550 (PARI) x='x+O('x^66); Vec((1-x)*(1-x-sqrt(1-6*x+x^2))/(2*sqrt(1-6*x+x^2))) \\ _Joerg Arndt_, May 13 2013 %o A104550 (Maxima) a(n):=sum(binomial(n+1,k)*binomial(n+k-1,k),k,0,n+1); /* _Vladimir Kruchinin_, Jun 15 2020 */ %Y A104550 Cf. A006318, A104549, A002002 (partial sums). %Y A104550 Cf. A035028. %K A104550 nonn %O A104550 1,2 %A A104550 _Emeric Deutsch_, Mar 14 2005