cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104557 Triangle T, read by rows, such that the unsigned columns of the matrix inverse when read downwards equals the rows of T read backwards, with T(n,n)=1 and T(n,n-1) = floor((n+1)/2)*floor((n+2)/2).

This page as a plain text file.
%I A104557 #12 Jan 22 2020 14:33:30
%S A104557 1,1,1,2,2,1,6,6,4,1,24,24,18,6,1,120,120,96,36,9,1,720,720,600,240,
%T A104557 72,12,1,5040,5040,4320,1800,600,120,16,1,40320,40320,35280,15120,
%U A104557 5400,1200,200,20,1,362880,362880,322560,141120,52920,12600,2400,300,25,1
%N A104557 Triangle T, read by rows, such that the unsigned columns of the matrix inverse when read downwards equals the rows of T read backwards, with T(n,n)=1 and T(n,n-1) = floor((n+1)/2)*floor((n+2)/2).
%C A104557 Matrix inverse is A104558. Row sums form A102038. See A104559 for further formulas, where A104559(n,k) = T(n,k)/(n-k)!.
%F A104557 Formula: T(n,k) = (n-k)!*C(n-floor(k/2), floor((k+1)/2))*C(n-floor((k+1)/2), floor(k/2)).
%F A104557 Recurrence: T(n,k) = n*T(n-1,k) + T(n-2,k-2) for n >= k >= 2, with T(0,0) = T(1,0) = T(1,1) = 1.
%F A104557 T(n,0) = n!.
%F A104557 T(n,k) = T(n-1,k-1) + floor((k+2)/2)*T(n,k+1), T(0,0)=1, T(n,k)=0 for k > n or for k < 0. - _Philippe Deléham_, Dec 18 2006
%e A104557 Rows of T begin:
%e A104557       1;
%e A104557       1,     1;
%e A104557       2,     2,     1;
%e A104557       6,     6,     4,     1;
%e A104557      24,    24,    18,     6,    1;
%e A104557     120,   120,    96,    36,    9,    1;
%e A104557     720,   720,   600,   240,   72,   12,   1;
%e A104557    5040,  5040,  4320,  1800,  600,  120,  16,  1;
%e A104557   40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1; ...
%e A104557 The matrix inverse A104558 begins:
%e A104557    1;
%e A104557   -1,  1;
%e A104557    0, -2,  1;
%e A104557    0,  2, -4,   1;
%e A104557    0,  0,  6,  -6,   1;
%e A104557    0,  0, -6,  18,  -9,   1;
%e A104557    0,  0,  0, -24,  36, -12,   1;
%e A104557    0,  0,  0,  24, -96,  72, -16, 1; ...
%o A104557 (PARI) T(n,k)=(n-k)!*binomial(n-(k\2),(k+1)\2)*binomial(n-((k+1)\2),k\2)
%Y A104557 Cf. A104558, A104559, A102038.
%K A104557 nonn,tabl
%O A104557 0,4
%A A104557 _Paul D. Hanna_, Mar 16 2005