cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104558 Triangle, read by rows, equal to the matrix inverse of A104557 and related to Laguerre polynomials.

This page as a plain text file.
%I A104558 #11 Sep 08 2022 08:45:17
%S A104558 1,-1,1,0,-2,1,0,2,-4,1,0,0,6,-6,1,0,0,-6,18,-9,1,0,0,0,-24,36,-12,1,
%T A104558 0,0,0,24,-96,72,-16,1,0,0,0,0,120,-240,120,-20,1,0,0,0,0,-120,600,
%U A104558 -600,200,-25,1,0,0,0,0,0,-720,1800,-1200,300,-30,1,0,0,0,0,0,720,-4320,5400,-2400,450,-36,1,0,0,0,0,0,0,5040,-15120,12600,-4200,630,-42,1
%N A104558 Triangle, read by rows, equal to the matrix inverse of A104557 and related to Laguerre polynomials.
%C A104558 Even-indexed rows are found in A066667 (generalized Laguerre polynomials). Odd-indexed rows are found in A021009 (Laguerre polynomials L_n(x)). Row sums equal A056920 (offset 1). Absolute row sums equal A056953 (offset 1).
%H A104558 G. C. Greubel, <a href="/A104558/b104558.txt">Rows n=0..100 of triangle, flattened</a>
%F A104558 T(n, k) = (-1)^(n-k)*(n-k)!*C(1+[n/2], k+1-[(n+1)/2])*C([(n+1)/2], k-[n/2]).
%e A104558 Rows begin:
%e A104558   1;
%e A104558   -1,1;
%e A104558   0,-2,1;
%e A104558   0,2,-4,1;
%e A104558   0,0,6,-6,1;
%e A104558   0,0,-6,18,-9,1;
%e A104558   0,0,0,-24,36,-12,1;
%e A104558   0,0,0,24,-96,72,-16,1;
%e A104558   0,0,0,0,120,-240,120,-20,1;
%e A104558   0,0,0,0,-120,600,-600,200,-25,1;
%e A104558   ...
%e A104558 Unsigned columns read downwards equals rows of matrix inverse A104557 read backwards:
%e A104558   1;
%e A104558   1,1;
%e A104558   2,2,1;
%e A104558   6,6,4,1;
%e A104558   24,24,18,6,1;
%e A104558   120,120,96,36,9,1;
%e A104558   ...
%t A104558 T[n_, k_] := (-1)^(n - k)*(n - k)!*Binomial[1 + Floor[n/2], k + 1 - Floor[(n + 1)/2]]*Binomial[Floor[(n+1)/2], k -Floor[n/2]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}]//Flatten (* _G. C. Greubel_, May 14 2018 *)
%o A104558 (PARI) {T(n,k)=(-1)^(n-k)*(n-k)!*binomial(1+n\2,k+1-(n+1)\2)* binomial( (n+1)\2,k-n\2)};
%o A104558 (Magma) /* As triangle */ [[(-1)^(n-k)*Factorial(n-k)*Binomial(1+ Floor(n/2), k +1 -Floor((n+1)/2))*Binomial(Floor((n+1)/2), k - Floor(n/2)): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, May 14 2018
%Y A104558 Cf. A104557, A066667, A021009, A056920, A056953.
%K A104558 sign,tabl
%O A104558 0,5
%A A104558 _Paul D. Hanna_, Mar 16 2005