This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104558 #11 Sep 08 2022 08:45:17 %S A104558 1,-1,1,0,-2,1,0,2,-4,1,0,0,6,-6,1,0,0,-6,18,-9,1,0,0,0,-24,36,-12,1, %T A104558 0,0,0,24,-96,72,-16,1,0,0,0,0,120,-240,120,-20,1,0,0,0,0,-120,600, %U A104558 -600,200,-25,1,0,0,0,0,0,-720,1800,-1200,300,-30,1,0,0,0,0,0,720,-4320,5400,-2400,450,-36,1,0,0,0,0,0,0,5040,-15120,12600,-4200,630,-42,1 %N A104558 Triangle, read by rows, equal to the matrix inverse of A104557 and related to Laguerre polynomials. %C A104558 Even-indexed rows are found in A066667 (generalized Laguerre polynomials). Odd-indexed rows are found in A021009 (Laguerre polynomials L_n(x)). Row sums equal A056920 (offset 1). Absolute row sums equal A056953 (offset 1). %H A104558 G. C. Greubel, <a href="/A104558/b104558.txt">Rows n=0..100 of triangle, flattened</a> %F A104558 T(n, k) = (-1)^(n-k)*(n-k)!*C(1+[n/2], k+1-[(n+1)/2])*C([(n+1)/2], k-[n/2]). %e A104558 Rows begin: %e A104558 1; %e A104558 -1,1; %e A104558 0,-2,1; %e A104558 0,2,-4,1; %e A104558 0,0,6,-6,1; %e A104558 0,0,-6,18,-9,1; %e A104558 0,0,0,-24,36,-12,1; %e A104558 0,0,0,24,-96,72,-16,1; %e A104558 0,0,0,0,120,-240,120,-20,1; %e A104558 0,0,0,0,-120,600,-600,200,-25,1; %e A104558 ... %e A104558 Unsigned columns read downwards equals rows of matrix inverse A104557 read backwards: %e A104558 1; %e A104558 1,1; %e A104558 2,2,1; %e A104558 6,6,4,1; %e A104558 24,24,18,6,1; %e A104558 120,120,96,36,9,1; %e A104558 ... %t A104558 T[n_, k_] := (-1)^(n - k)*(n - k)!*Binomial[1 + Floor[n/2], k + 1 - Floor[(n + 1)/2]]*Binomial[Floor[(n+1)/2], k -Floor[n/2]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}]//Flatten (* _G. C. Greubel_, May 14 2018 *) %o A104558 (PARI) {T(n,k)=(-1)^(n-k)*(n-k)!*binomial(1+n\2,k+1-(n+1)\2)* binomial( (n+1)\2,k-n\2)}; %o A104558 (Magma) /* As triangle */ [[(-1)^(n-k)*Factorial(n-k)*Binomial(1+ Floor(n/2), k +1 -Floor((n+1)/2))*Binomial(Floor((n+1)/2), k - Floor(n/2)): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, May 14 2018 %Y A104558 Cf. A104557, A066667, A021009, A056920, A056953. %K A104558 sign,tabl %O A104558 0,5 %A A104558 _Paul D. Hanna_, Mar 16 2005