This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104562 #71 Sep 01 2024 18:27:29 %S A104562 1,-1,1,0,-2,1,1,1,-3,1,-1,2,3,-4,1,0,-4,2,6,-5,1,1,2,-9,0,10,-6,1,-1, %T A104562 3,9,-15,-5,15,-7,1,0,-6,3,24,-20,-14,21,-8,1,1,3,-18,-6,49,-21,-28, %U A104562 28,-9,1,-1,4,18,-36,-35,84,-14,-48,36,-10,1,0,-8,4,60,-50,-98,126,6,-75,45,-11,1,1,4,-30,-20,145,-36,-210,168,45,-110,55,-12,1 %N A104562 Inverse of the Motzkin triangle A064189. %C A104562 Or, triangle read by rows: T(0, 0) = 1; for n >= 1 T(n, k) is the coefficient of x^k in the monic characteristic polynomial of the n X n tridiagonal matrix with 1's on the main, sub- and superdiagonal (0 <= k <= n). The characteristic polynomial has a root 1 + 2*cos(Pi/(n + 1)). - _Gary W. Adamson_, Nov 19 2006 %C A104562 Row sums have g.f. 1/(1 + x^2); diagonal sums are (-1)^n. Riordan array (1/(1 + x + x^2), x/(1 + x + x^2)). %C A104562 Or, triangle read by rows in which row n gives coefficients of characteristic polynomial of the n X n tridiagonal matrix with 1's on the main diagonal and -1's on the two adjacent diagonals. For example: M(3) = {{1, -1, 0}, {-1, 1, -1}, {0, -1, 1}}. - _Roger L. Bagula_, Mar 15 2008 %C A104562 Subtriangle of the triangle given by [0,-1,1,-1,0,0,0,0,0,0,0,...) DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Jan 27 2010 %C A104562 Triangle of coefficients of Chebyshev's S(n, x-1) polynomials (exponents of x in increasing order). - _Philippe Deléham_, Feb 19 2012 %D A104562 Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 1978, ISBN 0070511586, see p. 256. %H A104562 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Barry4/bern2.html">Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences</a>, Journal of Integer Sequences, Vol. 15 2012, #12.8.2. %H A104562 Jonathan L. Gross, Toufik Mansour, Thomas W. Tucker, and David G. L. Wang, <a href="https://doi.org/10.1016/j.jmaa.2016.04.033">Root geometry of polynomial sequences. II: Type (1,0)</a>, J. Math. Anal. Appl. 441, No. 2, 499-528 (2016). %H A104562 A. Luzón, D. Merlini, M. A. Morón, and R. Sprugnoli, <a href="http://dx.doi.org/10.1016/j.dam.2014.03.005">Complementary Riordan arrays</a>, Discrete Applied Mathematics, 172 (2014) 75-87. %F A104562 T(n, k) = Sum_{j=0..n} (-1)^(k-j)*(-1)^((n-j)/2) C((n+j)/2, j)(1+(-1)^(n+j))C(j, k)/2. %F A104562 T(n,k) = (-1)^(n-k)*A101950(n,k). - _Philippe Deléham_, Feb 19 2012 %F A104562 T(n,k) = T(n-1,k-1) - T(n-1,k) - T(n-2,l). - _Philippe Deléham_, Feb 19 2012 %F A104562 A104562*A007318 = A049310 as infinite lower triangular matrices. - _Philippe Deléham_, Feb 19 2012 %F A104562 G.f.: 1/(1+x+x^2-y*x). - _Philippe Deléham_, Feb 19 2012 %F A104562 T(n, k) = (-1)^(n - k)*C(n, k)*hypergeom([(k - n)/2, (k - n + 1)/2], [-n], 4) for n >= 1. - _Peter Luschny_, Apr 25 2016 %e A104562 Triangle starts: %e A104562 [0] 1; %e A104562 [1] -1, 1; %e A104562 [2] 0, -2, 1; %e A104562 [3] 1, 1, -3, 1; %e A104562 [4] -1, 2, 3, -4, 1; %e A104562 [5] 0, -4, 2, 6, -5, 1; %e A104562 [6] 1, 2, -9, 0, 10, -6, 1; %e A104562 [7] -1, 3, 9, -15, -5, 15, -7, 1; %e A104562 [8] 0, -6, 3, 24, -20, -14, 21, -8, 1; %e A104562 [9] 1, 3, -18, -6, 49, -21, -28, 28, -9, 1. %e A104562 ... %e A104562 From _Philippe Deléham_, Jan 27 2010: (Start) %e A104562 Triangle [0,-1,1,-1,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] begins: %e A104562 1; %e A104562 0, 1; %e A104562 0, -1, 1; %e A104562 0, 0, -2, 1; %e A104562 0, 1, 1, -3, 1; %e A104562 0, -1, 2, 3, -4, 1; %e A104562 ... (End) %p A104562 with(linalg): m:=proc(i,j) if abs(i-j)<=1 then 1 else 0 fi end: T:=(n,k)->coeff(charpoly(matrix(n,n,m),x),x,k): 1; for n from 1 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form %p A104562 # Alternatively: %p A104562 T := (n,k) -> `if`(n=0,1,(-1)^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], 4)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # _Peter Luschny_, Apr 25 2016 %t A104562 nmax = 12; %t A104562 M[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, k+2, 4]; %t A104562 invM = Inverse@Table[M[n, k], {n, 0, nmax}, {k, 0, nmax}]; %t A104562 T[n_, k_] := invM[[n+1, k+1]]; %t A104562 Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 15 2023 *) %o A104562 (Sage) %o A104562 @CachedFunction %o A104562 def A104562(n,k): %o A104562 if n< 0: return 0 %o A104562 if n==0: return 1 if k == 0 else 0 %o A104562 return A104562(n-1,k-1)-A104562(n-2,k)-A104562(n-1,k) %o A104562 for n in (0..9): [A104562(n,k) for k in (0..n)] # _Peter Luschny_, Nov 20 2012 %o A104562 (Sage) # Alternatively as coefficients of polynomials: %o A104562 def S(n,x): %o A104562 if n==0: return 1 %o A104562 if n==1: return x-1 %o A104562 return (x-1)*S(n-1,x)-S(n-2,x) %o A104562 for n in (0..7): print(S(n,x).list()) # _Peter Luschny_, Jun 23 2015 %Y A104562 Apart from signs identical to A101950. %Y A104562 Cf. A125090. %K A104562 easy,sign,tabl %O A104562 0,5 %A A104562 _Paul Barry_, Mar 15 2005 %E A104562 Edited by _N. J. A. Sloane_, Apr 10 2008 %E A104562 Typo correction in the _Roger L. Bagula_ comment and Mathematica section by _Wolfdieter Lang_, Nov 22 2011