cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104569 Triangle read by rows: T(i,j) is the (i,j)-entry (1 <= j <= i) of the product Q*R of the infinite lower triangular matrices Q = [1; 1,3; 1,3,1; 1 3,1,3; ...] and R = [1; 1,1; 1,1,1; 1,1,1,1; ...].

Original entry on oeis.org

1, 4, 3, 5, 4, 1, 8, 7, 4, 3, 9, 8, 5, 4, 1, 12, 11, 8, 7, 4, 3, 13, 12, 9, 8, 5, 4, 1, 16, 15, 12, 11, 8, 7, 4, 3, 17, 16, 13, 12, 9, 8, 5, 4, 1, 20, 19, 16, 15, 12, 11, 8, 7, 4, 3, 21, 20, 17, 16, 13, 12, 9, 8, 5, 4, 1, 24, 23, 20, 19, 16, 15, 12, 11, 8, 7, 4, 3, 25, 24, 21, 20, 17, 16, 13, 12, 9, 8, 5, 4, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 16 2005

Keywords

Examples

			The first few rows of the triangle are:
  1;
  4, 3;
  5, 4, 1;
  8, 7, 4, 3;
  9, 8, 5, 4, 1;
  ...
		

Crossrefs

Row sums yield A074377. Columns 1, 3, 5, ... (starting at the diagonal entry) yield A042948. Columns 2, 4, 6, ... (starting at the diagonal entry) yield A014601. The product R*Q yields A104570.

Programs

  • Maple
    T:=proc(i,j) if j>i then 0 elif i+j mod 2 = 1 then 2*(i-j)+2 elif i mod 2 = 1 and j mod 2 = 1 then 2*(i-j)+1 elif i mod 2 = 0 and j mod 2 = 0 then 2*(i-j)+3 else fi end: for i from 1 to 13 do seq(T(i,j),j=1..i) od; # yields sequence in triangular form # Emeric Deutsch, Mar 23 2005
  • Mathematica
    Q[i_, j_] := If[j <= i, 2 + (-1)^j, 0];
    R[i_, j_] := If[j <= i, 1, 0];
    T[i_, j_] := Sum[Q[i, k]*R[k, j], {k, 1, 13}];
    Table[T[i, j], {i, 1, 13}, {j, 1, i}] // Flatten (* Jean-François Alcover, Jul 24 2024 *)

Formula

For 1<=j<=i: T(i, j)=2(i-j+1) if i and j are of opposite parity; T(i, j)=2(i-j)+1 if both i and j are odd; T(i, j)=2(i-j)+3 if both i and j are even. - Emeric Deutsch, Mar 23 2005

Extensions

More terms from Emeric Deutsch, Mar 23 2005