This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104570 #17 Jul 24 2024 13:22:05 %S A104570 1,2,3,3,6,1,4,9,2,3,5,12,3,6,1,6,15,4,9,2,3,7,18,5,12,3,6,1,8,21,6, %T A104570 15,4,9,2,3,9,24,7,18,5,12,3,6,1,10,27,8,21,6,15,4,9,2,3,11,30,9,24,7, %U A104570 18,5,12,3,6,1,12,33,10,27,8,21,6,15,4,9,2,3,13,36,11,30,9,24,7,18,5,12,3,6,1 %N A104570 Triangle read by rows: T(i,j) is the (i,j)-entry (1 <= j <= i) of the product R*Q of the infinite lower triangular matrices R = [1; 1,1; 1,1,1; 1,1,1,1; ...] and Q = [1; 1,3; 1,3,1; 1,3,1,3; ...]. %F A104570 Even columns (offset) = 1, 2, 3, ...; while odd columns = 3, 6, 9, ... %F A104570 T(i,j) = i-j+1 if j <= i and j is odd; 3(i-j+1) if j <= i and j is even. - _Emeric Deutsch_, Mar 23 2005 %e A104570 First few rows of the triangle: %e A104570 1; %e A104570 2, 3; %e A104570 3, 6, 1; %e A104570 4, 9, 2, 3; %e A104570 ... %p A104570 T:=proc(i,j) if j>i then 0 elif j mod 2 = 1 then i-j+1 else 3*(i-j+1) fi end:for i from 1 to 14 do seq(T(i,j),j=1..i) od; # yields sequence in triangular form # _Emeric Deutsch_, Mar 23 2005 %t A104570 Q[i_, j_] := If[j <= i, 2 + (-1)^j, 0]; %t A104570 R[i_, j_] := If[j <= i, 1, 0]; %t A104570 T[i_, j_] := Sum[R[i, k]*Q[k, j], {k, 1, 13}]; %t A104570 Table[T[i, j], {i, 1, 13}, {j, 1, i}] // Flatten (* _Jean-François Alcover_, Jul 24 2024~ *) %Y A104570 Cf. A035608, A074377, A104569. %Y A104570 Row sums yield A035608. The product Q*R yields A104569. %K A104570 nonn,tabl %O A104570 1,2 %A A104570 _Gary W. Adamson_, Mar 16 2005 %E A104570 More terms from _Emeric Deutsch_, Mar 23 2005