This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104600 #19 Sep 03 2019 11:23:03 %S A104600 1,1,5,49,795,18881,611193,25704253,1356235163,87419692453, %T A104600 6741175388313,611464105166993,64336296019640307,7760748741918246361, %U A104600 1062626712168331953737,163738827988386433177093,28181351778805732986601035,5382075236937341624838444077 %N A104600 Number of matrices of any size up to column permutations, with n different elements, zero elsewhere and with no zero row or column. %H A104600 Alois P. Heinz, <a href="/A104600/b104600.txt">Table of n, a(n) for n = 0..274</a> %H A104600 M. Maia and M. Mendez, <a href="http://arXiv.org/abs/math.CO/0503436">On the arithmetic product of combinatorial species</a> %F A104600 (1/(2e)) * Sum{r, s>=0, (rs)_n / [2^r s! ] }, where (m)_n is the falling factorial m * (m-1) * ... * (m-n+1). %F A104600 E.g.f.: exp(-1)*sum(exp((1+x)^n)/2^(n+1),n=0..infinity). - _Vladeta Jovovic_, Sep 24 2006 %F A104600 a(n) = Sum_{k=0..n} Stirling1(n,k)*A000670(k)*A000110(k). - _Vladeta Jovovic_, Sep 27 2006 %F A104600 exp(-1)*sum(1/(2-(1+x)^n)/n!,n=0..infinity) is also e.g.f. - _Vladeta Jovovic_, Oct 09 2006 %p A104600 b:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)! %p A104600 *binomial(n-1, j-1)*b(n-j, k), j=1..min(k, n))) %p A104600 end: %p A104600 a:= n-> add(add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n): %p A104600 seq(a(n), n=0..21); # _Alois P. Heinz_, Sep 03 2019 %t A104600 Table[Sum[StirlingS1[n,k] * Sum[StirlingS2[k,j]*j!,{j,0,k}] * BellB[k],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, May 03 2015 *) %t A104600 Table[1/(2*E) * Sum[Sum[Product[r*s-k,{k,0,n-1}] / (2^r s!),{r,0,Infinity}],{s,0,Infinity}],{n,0,10}] (* _Vaclav Kotesovec_, May 03 2015 *) %Y A104600 Row sums of A323128. %Y A104600 Cf. A000110, A000670. %K A104600 nonn %O A104600 0,3 %A A104600 _Ralf Stephan_, Mar 27 2005 %E A104600 Corrected by _Vladeta Jovovic_, Sep 08 2006 %E A104600 Offset corrected by _Vaclav Kotesovec_, May 03 2015