This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104624 #57 Jan 07 2024 10:53:31 %S A104624 1,-2,2,0,-2,0,4,0,-10,0,28,0,-84,0,264,0,-858,0,2860,0,-9724,0,33592, %T A104624 0,-117572,0,416024,0,-1485800,0,5348880,0,-19389690,0,70715340,0, %U A104624 -259289580,0,955277400,0,-3534526380,0,13128240840,0,-48932534040,0,182965127280,0,-686119227300,0 %N A104624 Expansion of exp( arcsinh( -2*x ) ) in powers of x. %C A104624 First column in inverse of A054335. %C A104624 With offset 1 the coefficient sequence of series reversion of A000984 (binomial(2n,n)) also with offset 1. - _Michael Somos_, Jan 14 2011 %H A104624 G. C. Greubel, <a href="/A104624/b104624.txt">Table of n, a(n) for n = 0..1000</a> %H A104624 Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2019.06.018">Enumerating several aspects of non-decreasing Dyck paths</a>, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3091. %H A104624 Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013. %F A104624 G.f.: sqrt( 1 + 4*x^2 ) - 2*x = exp( asinh( -2*x ) ). - _Michael Somos_, Jan 14 2011 %F A104624 The positive sequence 1,2,2,0,2,... has g.f. 2(1+x)-sqrt(1-4x^2). - _Paul Barry_, Oct 10 2007 %F A104624 From _Vladimir Kruchinin_, Jan 16 2011: (Start) %F A104624 The o.g.f. A(x) satisfies A(x)=x*sqrt(1-4*A(x)), %F A104624 a(n) = 1/(n*(n+1)) * sum(j=0...n+1, j * 2^(j) * binomial(2*n-j-1,n-1) * binomial(n+1,j) * (-1)^(n-j)). (End) %F A104624 Conjecture: n*a(n) + (n-1)*a(n-1) + 4*(n-3)*a(n-2) + 4*(n-4)*a(n-3) = 0. - _R. J. Mathar_, Nov 15 2012 %F A104624 If n is even, a(n) ~ (-1)^(1+n/2) * 2^(n+1) * n^(n-1) / exp(n). - _Vaclav Kotesovec_, Oct 23 2013 %F A104624 G.f.: 2*S(0) -1-2*x-4*x^2, where S(k) = 2*k+1 + x^2*(2*k+3)/(1 + x^2*(2*k+1)/S(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Dec 23 2013 %F A104624 a(n) = (-1)^n*2*hypergeom([-n+1, 2-n], [2], -1). - _Peter Luschny_, Sep 23 2014 %e A104624 G.f. = 1 - 2*x + 2*x^2 - 2*x^4 + 4*x^6 - 10*x^8 + 28*x^10 - 84*x^12 + 264*x^14 + ... %p A104624 s := proc(n) option remember; `if`(n<2, n+1, 4*(n-2)*s(n-2)/(n+1)) end: A104624 := n -> `if`(n<2, (-1)^n*(n+1), (-1)^(n/2-1)*s(n-1)); seq(A104624(n), n=0..47); # _Peter Luschny_, Sep 23 2014 %t A104624 CoefficientList[ Series[ Exp[ ArcSinh[ -2x]], {x, 0, 49}], x] %t A104624 Table[(-1)^n 2 HypergeometricPFQ[{-n+1, 2-n}, {2}, -1], {n, 0, 46}] (* _Peter Luschny_, Sep 23 2014 *) %o A104624 (PARI) {a(n) = if( n<0, 0, polcoeff( sqrt( 1 + 4*x^2 + x*O(x^n) ) - 2*x, n ) )}; /* _Michael Somos_, Jan 14 2011 */ %o A104624 (Sage) %o A104624 def A104624(n): %o A104624 if n < 2: return (-1)^n*(n+1) %o A104624 if n % 2 == 1: return 0 %o A104624 return (-1)^(n/2+1)*binomial(n,n/2)/(n-1) %o A104624 [A104624(n) for n in range(47)] # _Peter Luschny_, Sep 23 2014 %o A104624 (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Exp(Argsinh(-2*x)))); // _G. C. Greubel_, Aug 12 2018 %K A104624 easy,sign %O A104624 0,2 %A A104624 _Paul Barry_, Mar 17 2005