This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104632 #21 Jul 23 2017 12:50:36 %S A104632 1,2,6,20,73,281,1125,4635,19525,83710,364070,1602327,7123041, %T A104632 31937010,144255802,655804649,2998354717,13777825186,63596593430, %U A104632 294743653360,1371017707245,6398580086645,29952930770185,140604572777250,661708404611603,3121439743413256,14756658303857332 %N A104632 1/n times A104631(n), the coefficient of x^(2n+1) in the expansion of (1+x+x^2+x^3+x^4)^n. %C A104632 This sequence may be viewed as a higher-order form of the Motzkin numbers, A001006, which are 1/n times the coefficient of x^(n+1) in the expansion of (1+x+x^2)^n. According to Superseeker, this sequence is the INVERT transform of A104184, which is related to Motzkin numbers also. See A104631 for additional comments. %C A104632 Alternatively, this sequence corresponds to the number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 1, and staying strictly above the x-axis. - _David Nguyen_, Dec 01 2016 %H A104632 C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv preprint arXiv:1609.06473 [math.CO], 2016. %F A104632 a(n) = Sum_{i=0..(2*n+1)/5}((-1)^i*binomial(n,i)*binomial(3*n-5*i,n-1))/n. - _Vladimir Kruchinin_, Apr 06 2017 %F A104632 Conjecture: 2*n*(2*n+1)*(n-1)*a(n) -(n-1)*(19*n^2-19*n+2)*a(n-1) -5*(n-2)*(2*n^2-3*n-1)*a(n-2) +25*n*(n-2)*(n-3)*a(n-3)=0. - _R. J. Mathar_, Jul 23 2017 %t A104632 f=1; Table[f=Expand[f(x^4+x^3+x^2+x+1)]; Coefficient[f, x, 2n+1]/n, {n, 30}] %t A104632 a[ n_] := If[ n < 1, 0, Coefficient[ (1 + x + x^2 + x^3 + x^4)^n, x, 2 n + 1] / n]; (* _Michael Somos_, Dec 01 2016 *) %o A104632 (PARI) a(n) = polcoeff((1+x+x^2+x^3+x^4)^n, 2*n+1)/n \\ _Michel Marcus_, Sep 24 2016 %o A104632 (Maxima) %o A104632 a(n):=sum((-1)^i*binomial(n,i)*binomial(3*n-5*i,n-1),i,0,(2*n+1)/5)/n; /* _Vladimir Kruchinin_, Apr 06 2017 */ %Y A104632 Cf. A005717 (coefficient of x^(n+1) in the expansion of (1+x+x^2)^n). %K A104632 easy,nonn %O A104632 1,2 %A A104632 _T. D. Noe_, Mar 17 2005