This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104676 #29 Mar 01 2025 11:16:54 %S A104676 21,84,216,450,825,1386,2184,3276,4725,6600,8976,11934,15561,19950, %T A104676 25200,31416,38709,47196,57000,68250,81081,95634,112056,130500,151125, %U A104676 174096,199584,227766,258825,292950,330336,371184,415701,464100,516600,573426,634809,700986 %N A104676 a(n) = binomial(n+2,2) * binomial(n+7,2). %H A104676 G. C. Greubel, <a href="/A104676/b104676.txt">Table of n, a(n) for n = 0..1000</a> %H A104676 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A104676 From _R. J. Mathar_, Nov 29 2015: (Start) %F A104676 a(n) = A000217(n+1) * A000217(n+6). %F A104676 G.f.: 3*(7 - 7*x + 2*x^2)/(1-x)^5. (End) %F A104676 a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - _Wesley Ivan Hurt_, Jan 25 2022 %F A104676 From _Amiram Eldar_, Aug 30 2022: (Start) %F A104676 Sum_{n>=0} 1/a(n) = 7/100. %F A104676 Sum_{n>=0} (-1)^n/a(n) = 7/180. (End) %F A104676 E.g.f.: (1/4)*(84 + 252*x + 138*x^2 + 22*x^3 + x^4)*exp(x). - _G. C. Greubel_, Mar 01 2025 %e A104676 If n=0 then C(0+2,0+0)*C(0+7,2) = C(2,0)*C(7,2) = 1*21 = 21. %e A104676 If n=8 then C(8+2,8+0)*C(8+7,2) = C(10,8)*C(15,2) = 45*105 = 4725. %p A104676 A104676:=n->binomial(n+2,2)*binomial(n+7,2): seq(A104676(n), n=0..50); # _Wesley Ivan Hurt_, Mar 30 2017 %t A104676 Table[Binomial[n + 2, 2] Binomial[n + 7, 2], {n, 0, 37}] (* _Michael De Vlieger_, Nov 29 2015 *) %o A104676 (PARI) a(n) = binomial(n+2,2)*binomial(n+7,2); \\ _Michel Marcus_, Nov 29 2015 %o A104676 (Magma) %o A104676 A104676:= func< n | Binomial(n+2,2)*Binomial(n+7,2) >; %o A104676 [A104676(n): n in [0..50]]; // _G. C. Greubel_, Mar 01 2025 %o A104676 (SageMath) %o A104676 def A104676(n): return binomial(n+2,2)*binomial(n+7,2) %o A104676 print([A104676(n) for n in range(51)]) # _G. C. Greubel_, Mar 01 2025 %Y A104676 Cf. A000217, A062190. %Y A104676 Subsequence of A085780. %K A104676 easy,nonn %O A104676 0,1 %A A104676 _Zerinvary Lajos_, Apr 22 2005