This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104683 #37 Jan 05 2025 19:51:38 %S A104683 1,1,5,7,29,41,169,239,985,1393,5741,8119,33461,47321,195025,275807, %T A104683 1136689,1607521,6625109,9369319,38613965,54608393,225058681, %U A104683 318281039,1311738121,1855077841,7645370045,10812186007,44560482149,63018038201 %N A104683 Interlaces "2*n^2 - 1 is a square" with NSW numbers. %C A104683 See A100828 for a similar case. %C A104683 If the pair (1,1)=(x,y), iteration of x'=3*x+4*y and y'=2*x+3*y gives a new pair of integer satisfying Pell's equation x^2-2*y^2=-1. Example: 7^2-2*5^2=-1; 41^2-2*29^2=-1. [_Vincenzo Librandi_, Nov 13 2010] %C A104683 Floretion Algebra Multiplication Program, FAMP Code: 1jesleftcycseq:['k + i' + j'] %D A104683 A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964. %H A104683 Bruno Berselli, <a href="/A104683/b104683.txt">Table of n, a(n) for n = 0..1000</a> %H A104683 T. W. Forget and T. A. Larkin, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/6-3/forget.pdf">Pythagorean triads of the form X, X+1, Z described by recurrence sequences</a>, Fib. Quart., 6 (No. 3, 1968), 94-104. %H A104683 Morris Newman, Daniel Shanks, and H. C. Williams, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa38/aa3826.pdf">Simple groups of square order and an interesting sequence of primes</a>, Acta Arith., 38 (1980/1981) 129-140. MR82b:20022. %H A104683 The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=NSWNumber">NSW number.</a> %H A104683 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,0,-1). %F A104683 G.f.: (1+x-x^2+x^3)/((x^2+2*x-1)*(x^2-2*x-1)). %F A104683 a(n) = ((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2)). [_Bruno Berselli_, Apr 04 2012] %t A104683 LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 7}, 30] (* _Bruno Berselli_, Apr 04 2012 *) %o A104683 (Maxima) makelist(expand(((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2))), n, 0, 29); /* _Bruno Berselli_, Apr 04 2012 */ %Y A104683 Cf. A001653, A002315, A100828. %K A104683 nonn,easy %O A104683 0,3 %A A104683 _Creighton Dement_, Apr 22 2005