cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104712 Pascal's triangle, with the first two columns removed.

This page as a plain text file.
%I A104712 #81 May 23 2025 01:34:33
%S A104712 1,3,1,6,4,1,10,10,5,1,15,20,15,6,1,21,35,35,21,7,1,28,56,70,56,28,8,
%T A104712 1,36,84,126,126,84,36,9,1,45,120,210,252,210,120,45,10,1,55,165,330,
%U A104712 462,462,330,165,55,11,1,66,220,495,792,924,792,495,220,66,12,1,78,286,715
%N A104712 Pascal's triangle, with the first two columns removed.
%C A104712 A000295 (Eulerian numbers) gives the row sums.
%C A104712 Write A004736 and Pascal's triangle as infinite lower triangular matrices A and B; then A*B is this triangle.
%C A104712 From _Peter Luschny_, Apr 10 2011: (Start)
%C A104712 A slight variation has a combinatorial interpretation: remove the last column and the second one from Pascal's triangle. Let P(m, k) denote the set partitions of {1,2,..,n} with the following properties:
%C A104712 (a) Each partition has at least one singleton block;
%C A104712 (c) k is the size of the largest block of the partition;
%C A104712 (b) m = n - k + 1 is the number of parts of the partition.
%C A104712 Then A000295(n) = Sum_{k=1..n} card(P(n-k+1,k)).
%C A104712 For instance, A000295(4) = P(4,1) + P(3,2) + P(2,3) + P(1,4) = card({1|2|3|4}) + card({1|2|34, 1|3|24,1|4|23, 2|3|14, 2|4|13, 3|4|12}) + card({1|234, 2|134, 3|124, 4|123}) = 1 + 6 + 4 = 11.
%C A104712 This interpretation can be superimposed on the sequence by changing the offset to 1 and adding the value 1 in front. The triangle then starts
%C A104712   1;
%C A104712   1,  3;
%C A104712   1,  6,  4;
%C A104712   1, 10, 10,  5;
%C A104712   1, 15, 20, 15,  6;
%C A104712   ...
%C A104712 (End)
%C A104712 Diagonal sums are A001924(n+1). - _Philippe Deléham_, Jan 11 2014
%C A104712 Relation to K-theory: T acting on the column vector (d,-d^2,d^3,...) generates the Euler classes for a hypersurface of degree d in CP^n. Cf. Dugger p. 168, A111492, A238363, and A135278. - _Tom Copeland_, Apr 11 2014
%H A104712 G. C. Greubel, <a href="/A104712/b104712.txt">Rows n=2..100 of triangle, flattened</a>
%H A104712 D. Dugger, <a href="https://pages.uoregon.edu/ddugger/kgeom_040524.pdf">A Geometric Introduction to K-Theory</a>
%H A104712 Candice A. Marshall, <a href="http://hdl.handle.net/11603/10353">Construction of Pseudo-Involutions in the Riordan Group</a>, Dissertation, Morgan State University, 2017.
%H A104712 T. Saito, <a href="http://arxiv.org/abs/1110.1717">The discriminant and the determinant of a hypersurface of even dimension</a> (p. 4), arXiv:1110.1717 [math.AG], 2011-2012.
%F A104712 T(n,k) = binomial(n,k), for 2 <= k <= n.
%F A104712 From _Peter Bala_, Jul 16 2013: (Start)
%F A104712 The following remarks assume an offset of 0.
%F A104712 Riordan array (1/(1 - x)^3, x/(1 - x)).
%F A104712 O.g.f.: 1/(1 - t)^2*1/(1 - (1 + x)*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2 + ....
%F A104712 E.g.f.: (1/x*d/dt)^2 (exp(t)*(exp(x*t) - 1 - x*t)) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2/2! + ....
%F A104712 The infinitesimal generator for this triangle has the sequence [3,4,5,...] on the main subdiagonal and 0's elsewhere. (End)
%F A104712 As triangle T(n,k), 0<=k<=n: T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Jan 11 2014
%F A104712 From _Tom Copeland_, Apr 11 2014: (Start)
%F A104712 A) The infinitesimal generator for this matrix is given in A132681 with m=2. See that entry for numerous relations to differential operators and the Laguerre polynomials of order m=2, i.e., Lag(n,t,2) = Sum_{j=0..n} binomial(n+2,n-j)*(-t)^j/j!.
%F A104712 B) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^3 }
%F A104712 C) O.g.f. of row e.g.f.s: exp[t*x/(1-x)]/(1-x)^3 = [Sum_{n>=0} x^n * Lag(n,-t,2)] = 1 + (3 + t)*x + (6 + 4t + t^2/2!)*x^2 + (10 + 10t + 5t^2/2! + t^3/3!)*x^3 + ....
%F A104712 D) E.g.f. of row o.g.f.s: [(1+t)*exp((1+t)*x) - (1+t+t*x)exp(x)]/t^2. (End)
%F A104712 O.g.f. for m-th row (m=n-2): [(1+x)^(m+2)-(1+(m+2)*x)]/x^2. - _Tom Copeland_, Apr 16 2014
%F A104712 Reverse T = [St2]*dP*[St1]- dP = [St2]*(exp(x*M)-I)*[St1]-(exp(x*M)-I) with top two rows of zeros removed, [St1]=padded A008275 just as [St2]=A048993=padded A008277, dP= A132440, M=A238385-I, and I=identity matrix. Cf. A238363. - _Tom Copeland_, Apr 26 2014
%F A104712 O.g.f. of column k (with k leading zeros): (x^k)/(1-x)^(k+1), k >= 2. - _Wolfdieter Lang_, Mar 20 2015
%e A104712 The triangle a(n, k) begins:
%e A104712   n\k  2   3   4    5    6    7    8   9  10 11 12 13
%e A104712   2:   1
%e A104712   3:   3   1
%e A104712   4:   6   4   1
%e A104712   5:  10  10   5    1
%e A104712   6:  15  20  15    6    1
%e A104712   7:  21  35  35   21    7    1
%e A104712   8:  28  56  70   56   28    8    1
%e A104712   9:  36  84 126  126   84   36    9   1
%e A104712   10: 45 120 210  252  210  120   45  10   1
%e A104712   11: 55 165 330  462  462  330  165  55  11  1
%e A104712   12: 66 220 495  792  924  792  495 220  66 12  1
%e A104712   13: 78 286 715 1287 1716 1716 1287 715 286 78 13  1
%e A104712 ... reformatted. - _Wolfdieter Lang_, Mar 20 2015
%t A104712 t[n_, k_] := Binomial[n, k]; Table[ t[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* _Robert G. Wilson v_, Apr 16 2011 *)
%o A104712 (PARI) for(n=2, 10, for(k=2,n, print1(binomial(n,k), ", "))) \\ _G. C. Greubel_, May 15 2018
%o A104712 (Magma) /* As triangle */ [[Binomial(n, k): k in [2..n]]: n in [2..10]]; // _G. C. Greubel_, May 15 2018
%Y A104712 Cf. A000295, A007318, A008292, A104713, A027641/A027642 (first Bernoulli numbers B-), A164555/A027642 (second Bernoulli numbers B+), A176327/A176289.
%K A104712 nonn,tabl,easy
%O A104712 2,2
%A A104712 _Gary W. Adamson_, Mar 19 2005
%E A104712 Edited and extended by _David Wasserman_, Jul 03 2007