A104726 Triangle generated as the matrix product of A026729 and A000012 (triangular views), read by rows.
1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 5, 5, 5, 4, 1, 8, 8, 8, 8, 5, 1, 13, 13, 13, 13, 12, 6, 1, 21, 21, 21, 21, 21, 17, 7, 1, 34, 34, 34, 34, 34, 33, 23, 8, 1, 55, 55, 55, 55, 55, 55, 50, 30, 9, 1, 89, 89, 89, 89, 89, 89, 88, 73, 38
Offset: 0
Examples
First few rows of the triangle are 1; 1, 1; 2, 2, 1; 3, 3, 3, 1; 5, 5, 5, 4, 1; 8, 8, 8, 8, 5, 1; 13, 13, 13, 13, 12, 6, 1; 21, 21, 21, 21, 21, 17, 7, 1; ... Production array begins 1, 1 1, 1, 1 -1, -1, 1, 1 2, 2, -1, 1, 1 -5, -5, 2, -1, 1, 1 14, 14, -5, 2, -1, 1, 1 -42, -42, 14, -5, 2, -1, 1, 1 132, 132, -42, 14, -5, 2, -1, 1, 1 -429, -429, 132, -42, 14, -5, 2, -1, 1, 1 ... which is based on A000108 or A168491. - _Philippe Deléham_, Mar 06 2013
Programs
-
Maple
A104726 := proc(n,k) add( binomial(j,n-j),j=k..n) ; end proc: seq(seq(A104726(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Oct 30 2011
Formula
T(n,k) = sum_{j=k..n} binomial(j,n-j). - R. J. Mathar, Oct 30 2011
T(n,0) = T(n-1,0) + T(n-2,0), T(n,k) = T(n-1,k-1) + T(n-2,k-1) for k>0. - Philippe Deléham, Mar 06 2013
Comments