A104746 Array T(n,k) read by antidiagonals: T(1,k) = 2^k-1 and recursively T(n,k) = T(n-1,k) + A000337(k-1), n,k >= 1.
1, 1, 3, 1, 4, 7, 1, 5, 12, 15, 1, 6, 17, 32, 31, 1, 7, 22, 49, 80, 63, 1, 8, 27, 66, 129, 192, 127, 1, 9, 32, 83, 178, 321, 448, 255, 1, 10, 37, 100, 227, 450, 769, 1024, 511, 1, 11, 42, 117, 276, 579, 1090, 1793, 2304, 1023, 1, 12, 47, 134, 325, 708, 1411, 2562, 4097, 5120, 2047, 1, 13, 52, 151, 374, 837, 1732, 3331, 5890, 9217, 11264, 4095
Offset: 1
Examples
To the first row, add the terms 0, 1, 5, 17, 49, 129, ... as indicated: 1, 3, 7, 15, 31, 63, ... 0, 1, 5, 17, 49, 129, ... (getting row 2 of the array: 1, 4, 12, 32, 80, 192, ... (= A001787, binomial transform for 1,2,3, ...) Repeat the operation, getting the following array T(n,k): 1, 3, 7, 15, 31, 63, ... 1, 4, 12, 32, 80, 192, ... 1, 5, 17, 49, 129, 321, ... 1, 6, 22, 66, 178, 450, ...
Programs
-
Maple
A000337 := proc(n) 1+(n-1)*2^n ; end proc: A104746 := proc(n,k) option remember; if n= 1 then 2^k-1 ; else procname(n-1,k)+A000337(k-1) ; end if; end proc: for d from 1 to 12 do for k from 1 to d do n := d-k+1 ; printf("%d,",A104746(n,k)) ; end do: end do; # R. J. Mathar, Oct 30 2011
-
Mathematica
A000337[n_] := (n - 1)*2^n + 1; T[1, k_] := 2^k - 1; T[n_, k_] := T[n, k] = T[n - 1, k] + A000337[k - 1]; Table[T[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 30 2024 *)
Formula
Extensions
Terms corrected by R. J. Mathar, Oct 30 2011
Comments